## Government College of Engineering, Aurangabad

(An autonomous Institute of Government of Maharashtra)

F.E. (Old) Examination

End Semester Examination

GE 101: ENGINEERING MATHEMATICS - I

Time: Three hours 1

[ Max Marks: 70

"Verify the Course code and check whether you have got the correct question paper"

- 1. All questions are compulsory
- 2. Figures to the right indicate full marks.
- 3. Assume suitable data if necessary and state it clearly.
- 4. Use of non programmable calculator is allowed

Q.1. (a) Attempt any two of the following

(10)

- (i) Find continued product of all the values of  $\left(\frac{1}{2} + i \frac{\sqrt{3}}{2}\right)^{4}$
- (ii) Expand  $\cos^6 \theta$  in terms of cosine multiples of  $\theta$  using De-movire's theorem
- (iii) If  $u + iv = \cos ec \left( ix + \frac{\pi}{4} \right)$ , prove that  $(u^2 + v^2)^2 = 2(u^2 v^2)$

Q.1. (b) Attempt any one of the following

(04)

- (i) If  $\sin(\theta + i\phi) = \tan \alpha + i \sec \alpha$ , show that  $\cos 2\theta \cos 2\phi = 3$ .
- (ii) Separate into real and imaginary parts the complex number  $\sin^{-1}(e^{i\theta})$

Q.2. (a) Attempt any two of the following

(10)

- (i) Evaluate  $\lim \log_x \sin x$
- (ii) If  $y = e^{\sin^{-1}x}$ , then prove that  $(1-x^2)y_{n+2} = (2n+1)xy_{n+1} + (n^2+1)y_n$
- (iii) Expand  $f(x) = 2x^3 + 7x^2 + x 1$  in powers of (x 2)

Q.2. (b) Attempt any one of the following

(04)

- (i) Find  $n^{th}$  derivative of  $y = \frac{x}{(x-1)(x-2)(x-3)}$
- (ii) Evaluate  $\lim_{x\to 0} \log_x \sin x$

Q.3. (a) Attempt any two of the following

(10)

- (i) If  $x = \frac{r}{2} (e^{\theta} + e^{-\theta})$ ,  $y = \frac{r}{2} (e^{\theta} e^{-\theta})$ , then prove that  $\left(\frac{\partial x}{\partial r}\right)_{\alpha} = \left(\frac{\partial r}{\partial x}\right)_{\alpha}$ .
- (ii) If  $u = f\left(\frac{x}{v}, \frac{y}{z}, \frac{z}{x}\right)$ , find  $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z}$
- (iii) Find the points on the surface  $z^2 = xy + 1$  nearest to the origin. Also find the distance.

Q.3. (b) Attempt any one of the following

(04)

(i) Determine whether the functions u and v are functionally dependent or not where  $u = e^x \sin y$ ,  $v = e^x \cos y$ .

If dependent, find the relation between them.

(ii) State Euler's theorem. If 
$$u = \frac{x^3 + y^3}{y\sqrt{x}}$$
, then find  $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y}$  at  $x = 1$ ,  $y = 2$ .

Q.4. (a) Attempt any two of the following

(10)

- (i) Solve the system of equations given below 2x y z = 2, x + 2y + z = 2, 4x 7y 5z = 2
- (ii) Find rank of the matrix,  $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 5 & 7 \end{bmatrix}$
- (iii) Find Eigen values and Eigen vectors  $A = \begin{bmatrix} 4 & 2 & -2 \\ -5 & 3 & 2 \\ -2 & 4 & 1 \end{bmatrix}$
- Q.4. (b) Attempt any one of the following

(04)

- (i) Examine whether the vectors given below are linearly independent or dependent: [1,-1,1], [2,1,1], [3,0,2].
- (ii) Apply Cayley-Hamilton theorem to A, where  $A = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}$ , and express  $A^5 4A^4 7A^3 + 11A^2 A 10I$  as a linear polynomial in A.
- Q.5. (a) Attempt any two of the following

(10)

- (i) Find the equation of the cylinder of radius 2 whose axis passing through (1,2,3), and has direction cosines proportional to 2,-3,6.
- (ii) Find the equation of the right circular cone whose vertex is at point (0,0,0) and whose axis is the line  $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$  and has semivertical angle of  $45^{\circ}$
- (iii) Find the equation of the sphere through the circle x-2y+4z=9,  $x^2+y^2+z^2+2x+3y+6=0$  and through the centre of the sphere  $x^2+y^2+z^2-2x+4y-6z+5=0$ .
- Q.5. (b) Attempt any one of the following

(04)

- (i) Find the equation of the sphere on the joint of (2,-3,1) and (1,-2,-1)
- (ii) Show that the plane 2x 2y + z + 12 = 0 touches the sphere

$$x^{2} + v^{2} + z^{2} - 2x - 4v + 2z - 3 = 0$$