Government College of Engineering, Aurangabad

(An Autonomous Institute of Government of Maharashtra)

S. E. (Mechanical) Examination

End Semester Examination Nov 2016

ME204: ENGINEERING THERMODYNAMICS

Time: Three Hours

Max. Marks: 60

"Verify the Course Code and check whether you have got the correct question paper"

N.B:-

1. All questions are compulsory.

- 2. Figures to the right indicate full marks.
- 3. Assume suitable data if necessary and state it clearly.
- 4. Use of non-programmable calculator is allowed.
- 5. Use of Steam tables is permitted.

Q.1) Attempt any **Two**

12

- i) Define i) Enthalpy, ii) Sp. Heat at constant pressure, iii) Sp. Heat at constant volume.
- ii) Write down the Steady Flow Energy Equation. Explain each term involved in it and modify it for IC Engine, Pump & blower.
- iii) In a steam plant, 1 kg of water per second is supplied to the boiler. The enthalpy and velocity of water entering the boiler are 800 kJ/kg and 5 m/s. The water receives 2200 kJ/kg of heat in the boiler at constant pressure. The steam after passing through the turbine comes out with a velocity of 50 m/s, and its enthalpy is 2520 kJ/kg. The inlet is 4 m above the turbine exit. Assuming the heat losses from the boiler and the turbine to the surroundings are 20 kJ/s, calculate the power developed by the turbine. Consider the boiler and the turbine as single system.
- Q.2) Attempt any Two

12

- i) Compare heat engine, refrigerator & heat pump.
- ii) Prove that, Entropy is a property of system.
- iii) Establish the equivalence of Kelvin-planks and Clausius statements.
- Q.3) Attempt any Two

12

- i) Describe the method of finding the dryness fraction of steam by bucket calorimeter. Clearly explain its limitations.
- ii) Determine the mass of 0.15 m³ of wet steam at a pressure of 4 bar and dryness fraction of 0.8. Also calculate the heat of 1 m³ of steam.
- iii) Determine the enthalpy and internal energy of 2 kg of steam at a pressure of 1.4 MPa and 0.85 dryness. Also determine the heat supplied at constant pressure if the final condition of the steam is 70° C of superheat. Take C_{ps} (superheated steam) = 2.25 kJ/kg.
- Q.4) Attempt any Two

12

- i) Derive the equation for air standard efficiency of Otto cycle.
- ii) Explain Ericsson cycle and derive equation for its efficiency. State the assumptions made.
- iii) An air engine working on the Otto cycle has the compression ratio raised from 5 to 6. Compare the change in efficiency due to this rise. Assume $\gamma = 1.4$.
- Q.5) Attempt any Two

12

- i) How the analysis of exhaust and flue gas is carried out using ORSAT apparatus.
- ii) The ultimate analysis of dry coal burnt a boiler is C 84%, H₂ 9% and incombustibles 7% by mass. Determine the mass of dry flue gases per kg of coal burnt, if the volumetric composition of the flue gas is: CO₂ 8.75%, CO 2.25%, O₂ 8% and N₂ 81%.
- iii) The analysis of coal supplied to a boiler was: C = 81%, $H_2 = 4.5\%$, $O_2 = 8\%$ and rest is ash. The ORSAT analysis of dry flue gases was: $CO_2 = 8.3\%$, CO = 1.4%, $O_2 = 10\%$, & N_2 (by difference) = 80.3%. Find a) the mass of air supplied per kg of coal, b) the percentage of Excess air.