Government College of Engineering, Aurangabad

(An Autonomous Institute of Government of Maharashtra) Station Road, Osmanpura, Aurangabad – 431005 (M.S.) Phone – (0240) 2366101, 2366111, Fax (0240) 2332835

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

PROPOSED CURRICULUM STRUCTURE FROM ACADEMIC YEAR 2023-24

As per NEP

Vision of the Institute

• In pursuit of global competitiveness, the institute is committed to excel in engineering education and research with concern for environment and society.

Mission of the Institute

- Provide conducive environment for academic excellence in engineering education.
- Enhance research and development along with promotion to sponsored projects and industrial consultancy.
- Foster development of students by creating awareness for needs of society, sustainable development and human values.

Vision of the Computer Science & Engineering Department

 To develop cultured and technically competent computer professionals and scholars with sustained growth in employability, high impact research outcome and become genuine asset to industry and society

Mission of the Computer Science & Engineering Department

- Developing Creativity and Logical Reasoning amongst the learner
- Updating curricula according to industry requirements and standards
- Promote leadership quality, social accountability and ethics in disciplined environment, quality Education.
- Creating environment conducive to research

Program Outcomes

Engineering Graduates will be able to:

- PO1: Apply knowledge of mathematics, science and algorithm in solving complex Computer engineering problems.
- PO2: Generate solutions by conducting experiments and applying techniques to analyze and interpret data.
- PO3: Design component, or processes to meet the needs within realistic constraints.
- PO4: Identify, formulate, and solve Software Engineering, Networking and Data Mining problems.
- PO5: Comprehend professional and ethical responsibility in computing profession.
- PO6: Express effective communication skills.
- PO7: Participate in global, economic, environmental, and societal context.
- PO8: Recognize the need for, and an ability to engage in life-long learning.
- PO9: Knowledge of contemporary issues and emerging developments in computing profession.
- PO10: Utilize the techniques, skills and modern computer Engineering tools, Software and techniques necessary for Engineering practice.
- PO11: Function effectively as an individual and as a member or leader in diverse teams and in multidisciplinary settings.
- PO12: Design research problems and conduct research in computing environment.

Program Specific Outcomes

- PSO1:-Ability to apply probability, statistics, programming applications and science in the development of computing solution in appropriate areas for system software, database, networking, web development, network security & Operating system.
- PSO2: Ability to apply standard practices & methods in software project management and development using suitable programming environment & tools to deliver a quality product for the industry.
- PSO3:-Able to apply ethical, social, professional, fields with proper communication skills
 & team work & pursue lifelong learning

GENERAL COURSE STRUCTURE & THEME

A. Definition of Credit

1 Hr. Lecture (L) per week	1 Credit
1 Hr. Tutorial (T) per week	1 Credit
1 Hr. Practical (P) per week	0.5 Credit
2 Hours Practical (P) per week	1 Credit

B.Total Credits for the completion of B.Tech. in Computer Science & Engineering:

The total number of credits proposed for the four-year B.Tech in Computer Science & Engineering (CSE) with 1 Multidisciplinary minor (Compulsory) degree is 176 as per the structure given below:

C. Semester wise Credit Distribution Structure for Four Year UG Program in Computer Science & Engineering with One Multidisciplinary Minor

Semester		I	II	III	IV	V	VI	VII	VIII	Total Credits
Basic Science Course	BSC/ESC	8	8							16
Engineering Science Course		7	7							14
Programme Core Course(PCC)	Program Courses		02	12	12	10	12	8	0	56
Programme Elective Course(PEC)						04	08	08	0	20
Multidisciplinary Minor(MD M)	Multidisciplinary Courses		-	04	03	04	03	0	00	14
Open Elective (OE) Otherthan a particular program				03	03	02				08
Vocational and Skill Enhancement Course(VSEC)	Skill Courses	02	02		02		02			08
Ability Enhancement Course(AEC -01, AEC-02)	Humanities Social Science		02	02						04
Entrepreneurship/Economics /Management Courses	and Management			02	02					04
Indian Knowledge System(IKS)	(HSSM)	02								02
Value Education Course(VEC)				02	02					04
Research Methodology	Experiential								04	04
Comm. Engg. Project (CEP)/Field Project (FP)	Learning Courses			02				-	-	02
Project								04		04
Internship/ OJT									12-	12
Co-curricular Courses (CC)	Liberal Learning Courses	02	02						-	04
Total Credits (Major)		21	23	27	24	20	25	20	16	176

Students can opt for any of the following as per the rules and regulations given by institute:

- 1. B. Tech with one Multidisciplinary Minor = Total 176 Credits
- 2. B. Tech with one Multidisciplinary Minor and Honor in A.I.M.L / programming paradigm.=Total $194\,$

Credits

- 3. B. Tech with one Multidisciplinary Minor and Honor by Research = Total 194 Credits
- 4. B. Tech with two Multidisciplinary Minors = Total 190 Credits

Head of the Computer Science and Engineering Department Dean Academics

D.Category-wise Courses

1. BASIC SCIENCE COURSE [BSC]

S.	Cotogory	Course Title	Semester	Н	ours per w	eek	Total		
No	Category	Course Title	Semester	Lecture	Tutorial	Practical	Credits		
1	BSC	Mathematics – I	I	3	1	0	04		
2	BSC	Electrochemistry, Battery Science and Engineering Materials	I	3	0	0	03		
3	BSC	Lab Chemistry	I	0	0	2	01		
4	BSC	Mathematics – II	II	3	1	0	04		
5	BSC	Optics, Semiconductors and Quantum mechanics	II	3	0	0	03		
6	BSC	Lab Physics	II	0	0	2	01		
	Total Credits								

2. ENGINEERING SCIENCE COURSE [ESC]

S.	Cotogory	Course Title	Semester	Н	ours per w	eek	Total
No	Category	Course Title	Semester	Lecture	Tutorial	Practical	Credits
1	ESC	Basics of Civil Engineering / Engineering Mechanics/ Basics of Electrical Engineering	I	2	0	0	02
2	ESC	Programming for problem solving	I	3	0	0	03
3	ESC	Lab Programming for problem solving	I	0	0	2	01
4	ESC	Lab BCE / EM / BEE	I	0	0	2	01
5	ESC	Basics of Mechanical Engineering/Engineering Graphics	II	2	0	2	02
6	ESC	Basics of Electronics Engineering	II	2	0	0	03
7	ESC	Lab BME/ EG	II	0	0	2	01
8	ESC	Lab Basics of Electronics Engineering	II	0	0	2	01
		Total C	redits				14

3. VOCATIONAL AND SKILL ENHANCEMENT COURSE (VSEC)

S.	Catagory	Course Title	Semester	Н	ours per w	eek	Total
No	Category	Course Title	Semester	Lecture	Tutorial	Practical	Credits
1	VSEC	Computer Workshop	I	0	0	4	02
2	VSEC	Engineering Exploration	II	0	0	4	02
3	VSEC	Software Laboratory - I (WT)	IV	0	0	4	02
4	VSEC	Competative programming/SDL-2(Java programming)	VI	0	0	4	02
		Total	Credits				08

4. HUMANITIES & SOCIAL SCIENCES COURSES [HSSM]

			Semest	Но	ours per w	veek	Total
S. No	Category	Course Title	er	Lectur	Tutori al	Practic al	Credit s
1.	Indian Knowledge System (IKS)	Indian Knowledge System	I	2	0	0	02
2.	Ability Enhancement Course (AEC)	Communicati on Skills	II	2	0	0	02
3.	Entrepreneurship/Ec onomics/ Management Courses	Psychology	III	2	0	0	02
4.	Value Education Course (VEC)	Universal Human values	III	2	0	0	02
5.	Ability Enhancement Course (AEC)	Technical Communication	III	2	0	2	02
6.	Entrepreneurship/Ec onomics/ Management Courses	Personality Development	IV	2	0	0	02
7.	Value Education Course (VEC)	Environmental studies(EVS)	IV	2	0	0	02
		Total Cred	its				14

5. EXPERIENTIAL LEARNING COURSES (ELC)

S.	Category	Course Title	Semester	He	ours per w	eek	Total
No	Category	Course Title	Semester	Lecture	Tutorial	Practical	Credits
1	Comm. Engg. Project (CEP)/Field Project (FP)	Mini Project	III	0	0	4	02
2	Project	Project	VII	0	0	8	04
3	Research Methodology	Research Methodology	VIII	4		0	04
4	Internship/ OJT	Internship	VIII	-	-	24	12
		Tota	Credits			•	22

6. LIBERAL LEARNING COURSES (CO-CURRICULAR COURSES (CC))

S.			Semest - er	Но	ours per we	eek	Total		
No	Category	Course Title		Lecture	Tutorial	Practica l	Credits		
1	CC	Yoga	I	0	0	4	02		
2	CC	NSS/ Sports/ Clubs Activities	II	0	0	4	02		
	Total Credits								

7. MULTIDISCIPLINARY MINOR (MD M) and OPEN ELECTIVE (OE) OTHER THAN A PARTICULAR PROGRAM

List of Multidisciplinary Minor Courses from other faculties: Total 14 Credits as per GR

Two courses of 4 credits and two courses of 3 credits.

Open electives of 8 credits can be offered from these other faculties.

Two courses of 3 credits and 01 course of 02 credits.

Head of the Computer Science and Engineering Department Dean Academics Approved in XXVIth Academic Council Dated: 27th April 2023

Specialization	Dramatics	Film Making	Fine Art	Music
Multi- disciplinary Minor - 01	Dramatic Theory, Literature	Videography + Cinematography	Applied Art (Digital Art)	Theory of Indian Music
Multi- disciplinary Minor – 02	Acting	Acting Video Editing and Lighting (Generation Art)		Ancient and Modern Poetry
Multi- disciplinary Minor – 03	Directing	Story telling Story Boarding	Sculpture (3D-Space)	The Evolution of music
Multi- disciplinary Minor – 04	Playwriting	UI/UX and Animation	Visual Communication (Evolutionary Art)	Music and Film
Multi- disciplinary Minor – 05	Applied Interactive Theatre	Art of Visual Communication	Graphics Art (Print & Printing Art)	Introduction to Electronic and Computer Music
Multi- disciplinary Minor - 06	Technical Theatre	Film & TV Directing	Art Culture	Analysis of Tonal Music

Specialization	Management & Finance	Law	Social Science	Journalism
Multi- disciplinary Minor - 01	Microeconomics	Constitutional Law	Indian Economics	Principles of Communication
Multi- disciplinary Minor – 02	Corporate Social Responsibility	Human Rights & International Law	Introduction to Sociology	Fundamentals of Journalism
Multi- disciplinary Minor – 03	Principles of Accounting	Environmental Law	Geo-Informatics	Cyber Journalism
Multi- disciplinary Minor – 04	Business Intelligence	Civil Procedure Code (CPC)	Introduction to Political Sciences	Basics of Design & Graphics
Multi- disciplinary Minor – 05	Marketing Research	Land Laws including ceiling and other local laws	Corporate sociology	Mass Communication: Concepts and Processes
Multi- disciplinary Minor - 06	Corporate Governance and Business Ethics	Cyber Law	Modern India- Political, Economic & Social Ethos	IT and Online Journalism

Bhil

In addition to above courses following Groups are offered as Multidisciplinary Minor by Computer Science & Engineering Department

A) Artificial intelligence / Machine learning Group

S.	Catagory	gory Course Title Semester Hours per week					Total		
No	Category	Course Title	Semester	Lecture	Tutorial	Practical	Credits		
1	MD M	Introduction to Data Science	III	4	0	0	04		
2	MD M	Introduction To Machine Learning	IV	3	0	0	03		
3	MD M	Artificial Intelligence	V	4	0	0	04		
4	MD M	Neural network	VI	3	0	0	03		
Total Credits									

B) Programming Group

S.	10grammin	1	Semest	Но	urs per we	eek	Total			
No	Category	Course Title	er	Lecture	Tutorial	Practica l	Credits			
1	MD M	C programming	III	4	0	0	04			
2	MD M	Object oriented programming	IV	3	0	0	03			
3	MD M	Java programming	V	4	0	0	04			
4	MD M	Python Programming	VI	3	0	0	03			
	Total Credits									

dead of the Computer Science and Engineering Department Dean

Approved in XXVIth Academic Counci

In addition to above courses following courses are offered as Open Electives (OE) by Computer Science & Engineering Department

S.			Semest	Но	ours per we	eek	Total
No	Category	Course Title	er	Lecture	Tutorial	Practica l	Credits
1	OE	Design Thinking/criti cal thinking	III	3	0	0	03
2	OE	PECL/softwar e development cycle	IV	3	0	0	03
3	OE	Behavioural Science & organization	V	2	0	0	02
		To	tal Credi	ts			08

8. HONORS Student has to choose and One Honor out of the Four Honor groups provided below

Intelligent System Group

	ingent bysu		G .	Но	ours per we	eek	TD 1
S. No	Category	Course Title	Semest er	Lecture	Tutorial	Practica l	Total Credits
1	Honors	Modern Artificial intelligence	V	4	0	0	04
2	Honors	Advance Computer Vision	VI	4	0	0	04
3	Honors	Deep Learning	VII	4	0	0	04
4	Honors	Intelligent System	VIII	4	0	0	04
5	Honors	Mini Project	VIII	0	0	4	02
		To	otal Credi	ts	•		18

Head of the Computer Science and Engineering Department Dea

Approved in XXVIth Academic Council

Government College of Engineering, Aurangabad (An Autonomous Institute)

Teaching and Evaluation Scheme from year 2023-24 as per NEP

B. Tech. Program in Computer Science and Engineering Multidisciplinary Minor Semester I

		Course		Tea Sch			Conti	nuous	Evalua	tion in	terms o	of Marks
Sr N o	Catego ry	Course Code	Course Name	T H	Т	PR	Cred its	ISE I	ISE II	ISE III	ESE	Total (100)
1	BSC	MABSC 1001	Mathematics I	3	1	-	4	15	15	10	60	100
2	BSC	CHBSC 1001	Electrochemis try, Battery Science and Engineering Materials	3	_	-	3	15	15	10	60	100
3	ESC	#	# BCE / EM / BEE	2	-	-	2	10	10	-	30	50
4	ESC	CSESC 1001	Programming for problem solving	3	-	-	3	15	15	10	60	100
5	BSC	CHBSC 1003	Lab Chemistry	-	-	2	1	-	-	25	-	25
6	ESC	CSESC 1002	Lab Programming for problem solving	-	-	2	1	-	-	25	-	25
7	ESC	#	#Lab BCE / EM / BEE	-	-	2	1	-	-	25	-	25
8	VSEC	ITVSE 1001	Computer Workshop	-	-	4	2	-	-	50	-	50
9	IKS	CSIKS 1003	Indian Knowledge System	2	-	-	2	10	10	-	30	50
10	CC	INCCC 1001	Yoga Education	-	-	4	2	-	-	50	-	50
	Total	•	•	13	1	14	21	65	65	205	240	575

#			
CEESC1001	Basics of Civil Engineering	CEESC1002	Lab- Basics of Civil
	(BCE)		Engineering
AMESC1002	Engineering Mechanics	AMESC1003	Lab- Engineering Mechanics
	(EM)		
EEESC1011	Basics of Electrical	EEESC1012	Lab-Basics of Electrical
	Engineering (BEE)		Engineering

Induction Program (Mandatory)	3 Weeks Duration
Induction program to be completed at the start of the first year.	 Physical activity Creative Arts Universal Human Values Literary Proficiency Modules Lectures by Eminent People Visits to local Areas Familiarization to Dept./Branch & Innovations

Government College of Engineering, Aurangabad (An Autonomous Institute)

Teaching and Evaluation Scheme from year 2023-24

B. Tech. Program in Computer Science and Engineering Multidisciplinary Minor Semester II

		Course			Teaching Scheme Continuous Evaluation in terms Marks					terms	of	
Sr No	Category	Course Code	Course Name	TH	Т	PR	Credits	ISE I	ISE II	ISE III	ESE	Total (100)
1	BSC	MABSC1003	Mathematics II	3	1	-	4	15	15	10	60	100
2	BSC	PHBSC1002	Optics, Semiconductors and Quantum mechanics	3	-	-	3	15	15	10	60	100
3	ESC	#	# BME/ EG	2	-	-	2	15	15	10	60	100
4	ESC	ETESC 1003	Basics of Electronics Engineering	3	-	-	3	15	15	10	60	100
5	AEC	INAEC 1001	Communication Skills	2	-	-	2	10	10	-	30	50
6	PCC	CSPCC 1004	Computer Organization	2	-	-	2	10	10	-	30	50
7	BSC	PHBSC1003	Lab Physics	-	-	2	1	-	-	25		25
8	ESC	#	Lab BME/ EG	-	-	2	1	-		25		25
9	ESC	ETESC 1004	Lab Basics of Electronics Engineering	-	-	2	1	-	-	25		25
10	VSEC	ETVSE 1002	Engineering Exploration	-	-	4	2	-	25	25		50
11	CC	INCCC 1002 INCCC 1003 INCCC 1004	NSS Sports Club Activities	-	-	4	2	-	-	50		50
	Total			15	1	14	23	80	105	190	300	675

#			
MEESC1006:	Basics of Mechanical Engineering (BME)	MEESC1007	Lab- Basics of Mechanical Engineering
MEESC1001	Engineering Graphics (EG)	MEESC1005:	Lab- Engineering Graphics

Exit option:

The candidate should complete the internship of two months for 8 credits.

OR

Award of UG Certificate in Major with 44 credits and an additional 8 credits

			Credits
1	Desktop Engineer	Online/offline certification	8
2	IT Support Engineer	Course	8
3	Certified Programmer (C, C++, Java, Python based on language learned in Sem-1 and/or Sem-2)	(One course among the list shall be done in summer vacation after Semester II)	8

OR

After First Year:	The candidate should pass the following Two courses of 8 credits and complete one project to qualify for Certificate
	1. Data Structures
	2. Object Oriented Programming

Head of the Computer Science and Engineering Department

Dean Academic

Government College of Engineering, Aurangabad

(An Autonomous Institute)

Tentative Teaching and Evaluation Scheme from year 2024-25 as per NEP

Second Year B. Tech. Program in Computer Science and Engineering Multidisciplinary Minor

Semester III

				ching eme		Continuous Evaluation in terms of Marks				of		
Sr No	Category	Course Code	Course Name	T H	Т	P R	Cre dits	ISE I	ISE II	ISEI II	ES E	Total (100)
1	PCC		Engineering Mathematics III (Statistics, Differential Calculus)	2	1	-	3	15	15	10	60	100
2	PCC		Data Structures	3	-	-	3	15	15	10	60	100
3	PCC		Operating System	3	-	-	3	15	15	10	60	100
4	MD M		Multidisciplinary Minor	3	1	-	4	15	15	10	60	100
5	PCC		Lab Data Structure	-	-	2	1		-	25	25	50
6	PCC		Lab Operating System			2	1			25	25	50
7	PCC		Lab Adv C & C++	-	-	2	1		-	25	25	50
8	OE1		Open Elective-I	3	-		3	15	15	10	60	100
9	VEC		Universal Human value(UHV)	02			02	10	10		30	50
10	EECM/HSS M		(Psychology)	02			02	10	10		30	50
11	CEP/FP		Mini Project			4	2			50	50	100
12	AEC		Technical communication	02	0.5		2	10	10		30	50
	Total			20	02	10	27	105	105	175	515	900

lead of the Computer Science and Engineering Department

Dean Academics

Approved in XXVIth Academic Coun

Government College of Engineering, Aurangabad

(An Autonomous Institute)

Tentative Teaching and Evaluation Scheme from year 2024-25 as per NEP

Second Year B. Tech. Program in Computer Science and Engineering Multidisciplinary Minor

Semester IV

		Course		Teac Sche	ching eme		Continuous Evaluation in terms of Marks					arks
Sr No	Category	Course Code	Course Name	TH	T	PR	Credit s	ISE I	ISEI I	ISEII I	ES E	Total (100)
1	PCC		Discrete Mathematic Structure	3	-	-	3	15	15	10	60	100
2	PCC		Database Management System	3		-	3	15	15	10	60	100
3	PCC		Object Oriented Programming	3			3	15	15	10	60	100
4	OE2		Open Elective-II	3	-		3	15	15	10	60	100
5	PCC		Workshop II	-	-	2	1	-	-	25	25	50
6	(MD M)		Multidisciplin ary Minor	3	-	-	3	15	15	10	60	100
7	PCC		Lab Database Management System	-	-	2	1	-	-	25	25	50
8	PCC		Lab Object Oriented Programming			2	1			25	25	50
9	VSEC/		Software Laboratory - I (WT)			4	2			50	50	100
10	VEC		Environmental studies(EVS)	2			2	10	10		30	50
11	HSSM		Personality Development	2	_		2	10	10		30	50
	Total			19	00	10	24	95	95	175	485	850

Head of the Computer Science and Engineering Department

Dean Academics

Bridge Courses for exit:

The candidate should complete the internship of two months for 8 credits.

OR

Exit option: Award of UG Diploma in Major and an additional 8 credits

			Credits
1	Web Developer / App Developer	Online/Offline certification Course	8
2	Certified Database Engineer	One course among the list shall be done in summer vacation after Semester IV	8

OR

After Second Year:	The candidate should pass the following Two courses of 8 credits and complete
	one project to qualify for Certificate
	1. Software Engineering
	2. Cloud Computing

Government College of Engineering, Aurangabad

(An Autonomous Institute)

Tentative Teaching and Evaluation Scheme from year 2025-26 as per NEP

Third Year B. Tech. Program in Computer Science and Engineering Multidisciplinary Minor

Semester V

		Course			Teaching Scheme			Continuous Evaluation in terms of Marks					
Sr	Category	Course	Course Name	TH	T	PR	Cre					Total	
No		Code					dits	I	I	I	E	(100)	
1	PCC		Design & Analysis of Algorithm	3		-	3	15	15	10	60	100	
2	PCC		Software Engineering	3	-	-	3	15	15	10	60	100	
3	PCC		Formal Language and Automata Theory	3			3	15	15	10	60	100	
4	MDM		Multidisciplinary Minor	3	1		4	15	15	10	60	100	
5	PEC-I		Program Elective –I Core	3	-		3	15	15	10	60	100	
6	OE3		Open Elective-III	2	-	-	2	10	10		30	50	
7	PCC		Lab Design & Analysis of Algorithm	-	-	2	1		-	25	25	50	
8	PEC-I		Lab PEC-I			2	1			25	25	50	
9													
	Total	1		17	01	04	20	85	85	100	380	650	

Professional Elective I
1] Data Mining & Data warehousing
2] Cloud Computing
3] Image Processing

Government College of Engineering, Aurangabad

(An Autonomous Institute)

Tentative Teaching and Evaluation Scheme from year 2025-26 as per NEP **Third Year B. Tech. Program in Computer Science and Engineering Multidisciplinary**

Minor Semester VI

		Course		Teach Scher			Continuous Evaluation in terms of Marks					
Sr No	Category	Course Code	Course Name	ТН	T	PR	Cre dits	ISE I	ISEI I	ISEII I	ES E	Tota l (100
1	PCC		Computer Network	3	-	-	3	15	15	10	60	100
2	PCC		Compiler Design	3	-	-	3	15	15	10	60	100
3	PCC		Data Science	3			3	15	15	10	60	100
4	PEC-2		PEC2	3	-	-	3	15	15	10	60	100
5	PEC-3		PEC3	3	-	-	3	15	15	10	60	100
6	PCC		Lab Computer Network			2	1			25	25	50
7	PCC		Lab compiler design			2	1			25	25	50
8	PCC		Lab Data Science	-	-	2	1		-	25	25	50
9	PEC2		Lab PEC2	-	-	2	1		-	25	25	50
10	PEC3		Lab PEC3	-	-	2	1		-	25	25	50
11	MDM			3			3	15	15	10	60	100
12	VSEC		Competative programming/S DL-2(Java programming)			4	2			50	50	100
	Total			18		14	25	90	90	235	535	950

Dean Academics

Approved in XXVIth Academic Counc

Professional Elective II
1] Machine Learning
2] Computer Vision
3] Software Testing and Quality
Assurance

Professional Elective –III
1] Block Chain Technology
2] Neural Network
3] Cryptography & Network Security

Bridge Courses for exit:

The candidate should complete the internship of two months for 8 credits.

OR Exit option: Award of UG Degree in Major and an additional 8 credits

			Credits
1	Certiifed Network Engineer	Online/offline certification Course certification Course	0
2	Certified Cloud Engineer	One course among	8
3	Contified Software Engineer	the list shall be done in summer vacation after Semester VI	o
	Certified Software Engineer		8

\mathbf{OR}

After Third Year:	1. The candidate should pass the following Two courses of 8	
	credits to qualify for a B.Voc. Degree. 2. Any two from the list of electives, except registered earlier	

Government College of Engineering, Aurangabad (An Autonomous Institute)

Tentative Teaching and Evaluation Scheme from year 2026-27as per NEP

Final Year B. Tech. Program in Computer Science and Engineering Multidisciplinary Minor

Semester VII

		Cours	e	Tead Sche	-	g	Continuous Evaluation in terms of Marks					
Sr No	Category	Co urs e Co de	Course Name	ТН	T	PR	Credit s	ISE I	ISEI I	ISEII I	ES E	Total (100)
1	PCC		Big Data	3	-	-	3	15	15	10	60	100
2	PCC		Artificial Intelligence	3	-	-	3	15	15	10	60	100
3	PEC-4		PEC-IV	3	-	-	3	15	15	10	60	100
4	PEC-5		PEC-V	3	1	-	3	15	15	10	60	100
6	PE4		Lab PEC4	-	-	2	1		-	25	25	50
7	PEC5		Lab PEC5	-	-	2	1			25	25	50
8	PCC		Lab Big Data		-	2	1			25	25	50
9	PCC		Lab AI			2	1			25	25	50
10	PR/		Project			8	4			50	50	50
	Total			12	-	16	20	60	60	190	390	650

Head of the Computer Science and Engineering Department

Dean Academics

opproved in XXVIth Academic Council

Professional Elective -IV:

- 1] Data Analytics
- 2] Internet of Things
- 3] Natural Language Processing

Professional Elective -V:

- 1] Deep Learning
- 2] Design of Linux Operating System
- 3] Information Retrieval

Government College of Engineering, Aurangabad (An Autonomous Institute)

Tentative Teaching and Evaluation Scheme from year 2026-27as per NEP

Final Year B. Tech. Program in Computer Science and Engineering Multidisciplinary Minor

Semester VIII

Course				Teac Sche	_	5	Continuous Evaluation in terms of Mark				Marks	
Sr No	Category	Course Code	Course Name	ТН	Т	PR	Credit s	ISE I	ISEI I	ISEII I	ES E	Tota 1 (100)
2	Research Methodology			4			4	15	15	10	60	100
3	Internship/OJT					24	12					
	Total			4	-	24	16	15	15	10	60	100

Head of the Computer Science and Engineering Department

Dean Academics

Total 18 Credits as per GR 8 credits for Research Project I in Sem VII and 10 credit for Research Project II in Sem VIII

Government College of Engineering, Aurangabad (An Autonomous Institute)

Tentative Teaching and Evaluation Scheme from year 2026-27as per NEP

Final Year B. Tech. Program in Computer Science and Engineering with Research and Multidisciplinary Minor

Semester VII

Course					Teaching Scheme			Continuous Evaluation in terms of Marks				
Sr No	Category	Course Code	Course Name	TH	Т	PR	Credit s	ISE I	ISEI I	ISEII I	ES E	Tota l (100)
1	PCC		Big Data	3	-	-	3	15	15	10	60	100
2	PCC		Artificial Intelligence	3	-	-	3	15	15	10	60	100
3	PEC-4		PEC-IV	3	-	-	3	15	15	10	60	100
4	PEC-5		PEC-V	3	-	-	3	15	15	10	60	100
6	PE4		Lab PEC4	-	-	2	1		-	25	25	50
7	PEC5		Lab PEC5	-	-	2	1			25	25	50
8	PCC		Lab Big Data		-	2	1			25	25	50
9	PCC		Lab AI			2	1			25	25	50
10	PR/		Project I			4	4			50	50	50
11	PR/		Research Project I			16	8			100	100	200
	Total			12	-	12	20	60	60	190	390	650

Head of the Computer Science and Engineering Department

Professional Elective -IV:
1] Data Analytics
2] Internet of Things
3] Natural Language Processing
Professional Elective -V:
1] Deep Learning
2] Design of Linux Operating System
3] Information Retrieval

Government College of Engineering, Aurangabad (An Autonomous Institute)

Tentative Teaching and Evaluation Scheme from year 2026-27as per NEP

Final Year B. Tech. Program in Computer Science and Engineering with Research and Multidisciplinary Minor Semester VIII

Course			Teac Sche	_	5	Continu	ious Ev	aluatio	n in teri	ms of I	Marks	
Sr No	Category	Course Code	Course Name	TH	Т	PR	Credit s	ISE I	ISEI I	ISEII I	ES E	Tota 1 (100)
1	Research Methodology			4			4	15	15	10	60	100
2	Internship/OJT					24	12					
3	PR/		Research Project II			20	10			150	150	300
	Total			4	-	24	16	15	15	10	60	100

Head of the Computer Science and Engineering Department [

Dean Academics

Semester I

MABSC1001: MATHEMATICS I				
Teaching Scheme Examination Scheme				
Lectures: 03 hrs/ week	ISE I*	15 Marks		
Tutorial: 01 hrs/ week	ISE II*	15 Marks		
Credits: 04	ISE III*	10 Marks		
	End Semester Examination	60 Marks		

Course Description:

Mathematics I is a compulsory course for all the First Year B.Tech. students of the institute as per NEP.

Course Outcomes:

After completing the course, students will be able to:

	Course Outcomes	Bloom's	Unit
		Taxonomy	
		Level	
CO1	Define Beta, Gamma and error functions and find the roots of	K1	1,2,3,4,5
	Complex Numbers, Rank of Matrix, limit of function, series		
	expansion and maxima – minima of functions, asymptotes of		
	given curves.		
CO2	Summaries the Complex Numbers; Explain the Rank of Matrix,	K2	1,2,3,4,5
	successive differentiation, Special functions (Beta and Gamma		
	functions)		
CO3	Identify the real and imaginary part of logarithm of complex	K2	1,2
	numbers, eigen values and eigen vectors.		
CO4	Solve the system of linear equations using Gauss elimination	K2	2,3,4
	and Gauss Jordan Method, Leibnitz's theorem, definite integrals		
	using Beta and Gamma functions and definite integrals using		
	rule of Differentiation under integral sign.		
CO5	Apply De-Moivre's theorem, Cayley Hamilton theorem, ,	К3	1,2,4,5
	knowledge of integral calculus and sketch the approximate		
	shape of the curves .		

Head of the Computer Science and Engineering Department

Dean Academics

Detailed Syllabus:

Unit 1	Complex Numbers
	Definition of complex numbers, Argand Diagram, De-Moivre's theorem and its application to find roots of algebraic equations, expansions of trigonometric functions, Circular and Hyperbolic functions inverse Hyperbolic functions, Logarithm of complex numbers, separation into real and imaginary parts.
Unit 2	Matrices
	Rank of matrix, echelon form of matrix, normal form of matrix, algebraic system of m linear equations in n unknowns, Gauss elimination and Gauss Jordan elimination method, linear dependence and independence of vectors, orthogonal matrix, linear transformations, matrix of linear transformation, rank nulity theorem, Eigen values and Eigen vectors, Cayley Hamilton theorem and its applications.
Unit 3	Differential Calculus
	nth order ordinary derivatives of elementary functions, Leibnitz's theorem, expansion of function in power series, Taylor's series, Maclaurin's series indeterminate forms and L'hospital rule, maxima and minima, converge of sequence and series, range of convergence of power series, test of convergence – ratio test and comparison test.
Unit 4	Integral Calculus
	Beta function, Gamma function, rules of Differentiation Under Integral Sign, error function, application of definite integrals to evaluate surface area and volume of revolutions.
Unit 5	Curve Tracing and its applications
	Tracing of cartesian curves, polar curves and parametric equations, rectification of plane curves: cartesian and polar .

Text Books

- 1. Erwin Kreyszing, Advanced Engineering Mathematics, 10thEdition, Mumbai: Willey Eastern Ltd. 2015.
- 2. B. S. Grewal ,Higher Engineering Mathematics, 44th Edition, New Delhi: Khanna publication, 2017.
- 3. Ramana B.V. Higher Engineering Mathematics,11 th Reprint, New Delhi:Tata McGraw Hill, 2010.

- 4. David Poole, Linear Algebra : A Modern Introduction, 3rd Edition, USA : BROOKS/COLE CENGAGE Learning, 2011.
- 5. Ravish R. Singh, Mukul Bhatt, Engineering Mathematics- A tutorial approach, 4th Edition, New Delhi: Tata McGraw Hill Education Pvt. Ltd.2018.

Reference Books

- 1. Dass H.K. Advanced Engineering Mathematics, 22nd Edition, New Delhi: S. Chand publications, 2018.
- 2. P. N. Wartikar and J. N. Wartikar, A text book of Engineering Mathematics (Vol. 1 & 2), Reprint, Pune: Pune Vidhyarthi Griha prakashan, 2013.

Mapping of Course outcome with Program Outcomes

(Values in the mapping tables: 3 – HIGH 2 - MEDIUM 1 – LOW)

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
outcome												
CO1	2	2	1									1
CO2	2	2	1									1
CO3	2	2	1									1
CO4	2	3	1		2				2			1
CO5	3	3	1		2				2			1

Assessment: ISEI, II, III (Class Test-1, Class Test-2, TA)& ESE TA: Students will perform one or more of the following activities

- 1. Surprise Test
- 2. Assignment using Mathematical tools like Mathematica / MatLab or similar.
- 3. Quize
- 4. Any other activity suggested by course coordinator

Assessment Pattern:

Assessment Pattern Level	Knowledge Level	ISE I (Class	ISE II (Class	ISE III (TA +	End Semester Examination
	Level	Test-1)	Test-2)	Surprise Test)	Examination
No.					
K1	Remember	5	5		
K2	Understand	10	10		60
K3	Apply			10	
K4	Analyze				
K5	Evaluate				
K6	Create				

Head of the Computer Science and Engineering Department D

Dean Academic

roved in XXVIth Academic Council

Designed by

Prof. S. P. Atipamulu Prof. S. D. Gadhire

	CHBSC1001	l: Electrochem	istry, Battery Science and Engineering Mate	rials		
Teach	ning Scheme		Examination Scher	ne		
Lectu	res	03 Hrs/Week	ISE I	15		
Total	Credits	03	ISE II	15		
			TA	10		
			ESE	60		
			Duration of ESE	02:3	30 Hrs	
Prere	quisite:		1			
Cours	se Objectives:					
After	the completion of	of the course, th	e learner will be able to:			
CO1	Understand fu	ndamental of C	hemistry relevant to Engineering field.			
CO2			and secondary battery as well as battery and t	uel cel	1.	
CO3			ge of polymer reinforced composites, Nano m			
	applications of semiconductor conducting polymers in energy harnessing.					
CO4	Acquire and A	pply the princip	oles of green chemistry in designing alternative	e reacti	on	
	methodologies to minimize hazards and environmental degradation.					
CO5	Understand wa	ater treatment, c	lifferent techniques to remove temporary and I	erman	ent	
	hardness, Was	te water parame				
			Course Contents		CO	
Unit 1	Specific conductance, equivalent conductance. variation of equivalent conductance with dilution. migration of ions nernst equation and application determination of emf of cell, applications of emf measurements - potentiometric titrations instrumental methods of analysis: introduction, theory, instrumentation and applications flame photometry. Energy sciences: Fuels: classification, characteristics of good fuel, comparison between solid, liquid, gaseous fuel. calorific value, low and high calorific value, unitsof calorific value, determination of calorific value by Bomb calorimeter and numericals. fuel cells, solar cell and polymer cell					
Unit2	Battery Science Introduction - classification of batteries primary and secondary batteries, reserve batteries with examples, battery components and their role, characteristics of battery, batteries and their importance, basic requirements for commercial batteries, construction, working and applications of ni-cd and lithium ion battery, fuel cells- differences between battery and a fuel cell, classification of fuel cells-based on type of fuel, construction, working and applications of solid oxide fuel cell, hydrogen — oxygen fuel cell electrical vehicle battery construction, working advantages and disadvantages of EV car.					

Unit3	Advanced Engineering Materials Advanced polymers: conducting polymers, liquid crystal polymers. definition- classification- intrinsic and extrinsic, mechanism of conduction in doped poly acetylene -applications synthesis & mechanism of conduction in poly acetylene. biodegradable polymers: introduction and their requirements. synthesis and properties of poly lactic acid. applications of biodegradable polymers in medical	
Unit4	Environmental & Green Chemistry: Green Chemistry: introduction- definition of green chemistry, need of green chemistry, basic principles of green basic 12 principles of green chemistry. various green chemical approaches— microwave synthesis, bio catalyzed reactions Microwave and ultrasound assisted green synthesis: advantages and applications microwave assisted reactions in organic solvents apparatus required, examples of MAOS advantages and disadvantages of MAOS.	CO1 CO4
Unit5	Nanomaterials: Introduction, Fullerenes, Carbonnanotubes, Nanowires, Electronic and mechanical properties, Synthesis of nanomaterials, Applications of nanomaterials- Catalysis, Electronics Telecommunication, Medicines, Energy sciences	CO1 CO5

Cour	se Outcomes (CO):					
After	After successful completion of course the Students will be able					
CO ₁	To understand fundamental of Chemistry relevant to	Enginee	ering field.			
CO ₂	To differentiate between primary and secondary batte	ery as w	ell as battery and fuel	cell.		
CO ₃	To equipped with basic knowledge of polymer reinfo	orced co	mposites, applications	of		
	Semiconductor conducting polymers in energy harne	essing.				
CO4	To Understand Basic Principals of Green chemistry	for mini	mizing waste.			
CO5	To apply the principles of water softing to hard water	m and un	damatand aansaayanaa	of vyoton		
COS		r and un	derstand consequence	or water		
	quality degradation.					
Text :	Books					
-	1. F. W. Billmeyer, Text Book of Polymer Science, Joh	ın Wiley	& Sons, 15th Edition,	, 2020.		
2	2. B. K. Sharma- A text book of Industrial Chemistry. 1	15th Edi	tion, 2020. G.A. Ozin	& A.C.		
	Arsenault, "Nanotechnology A Chemical Approach	to Nanoi	materials".			
	RSC Publishing, 5th Edition, 2020.					
Refer	rence Books					
1.	1. Uppal M.M, Jain and Jain. Engineering Chemistry, Khanna Publishers, 45th Edition, 2020.					
2.	2. P.C. Jain and Monica Jain, A test Book of Engineering Chemistry, Dhanpat Rai					
	Publications,					
	New Delhi, 20th Edition, 2020.					
3.	S SDara - A Text book of Engineering Chemistry, S	Chand &	Company Ltd., 15th	Edition,		
	2020.					

CEESC1001: Basic of Civil Engineering						
Teaching Scheme Evaluation Scheme						
Theory	02hrs/week	ISE I	10 Marks			
Tutorial	00	ISE II	10 Marks			
Total Credits	02	ISE III				
		End Semester Examination	30 Marks			
		Total	50 Marks			

Pre-requisites - Nil

Course Description: Objective of this course is to provide an insight and inculcate the essentials of civil engineering discipline to the students of all branches of Engineering and to provide the students an illustration of the significance of the civil engineering profession in satisfying the societal needs. Civil engineers plan, design, build, supervise and maintain infrastructure projects such as public and private utility buildings, roads, bridges, water supply and sewage treatment schemes, irrigation projects, etc. This course will give an understanding to the students of the vast breadth and various areas of engagement available in overall field of civil engineering.

Course Outcomes:

After completing the course, students will able to:

	Course outcomes
CO1	Explain terms related with building construction
CO2	Illustrate various surveying techniques
CO3	Explain the uses of civil engineering materials and explain the types of roads
CO4	Demonstrate construction equipments and term related with earthquake
CO5	Sketch Environment and Irrigation works

Detailed syllabus:

Unit I	Building Construction
	Early constructions and developments over time, ancient monuments and modern
	marvels, development of various materials of constructions and methods of constructions
	Site selection, principles of planning, typical plan of residential building, plinth area,
	carpet area, floor space index, cost of building, building bye-laws.
	Loads coming on structure, types of construction a) load bearing structure b)
	framed structure.
	Function of foundation, column footing, combined footing and machine foundation.
	Superstructure and its components typical cross section through load bearing wall,
	brick and stone masonry used for construction, technical terms related with doors,

	windows and stairs.
Unit 2	Geographical Measurement
	Principles of survey, measurement of distance by chain and tape, laser distance
	meter base line and offset equipments for laying offsets, prismatic compass,
	measurement of bearing and calculation of inclined angles, study and use of
	dumpy level, leveling staff, bench mark, determination of reduced levels, modern
	surveying equipments, remote sensing and GIS, uses of toposheets and contours
Unit 3	Civil Engineering Materials, Road construction and Water Resources Engg
	Study of properties and uses of different engineering materials a) bricks b) stones
	c) aggregates d) sand e) cement f) concrete g) steel h) paving blocks i) autoclaved
	aerated concrete blocks j) paints
	Classification of roads, Rigid and flexible pavements, typical road sections in
	cutting and embankment, function of camber, super-elevation, intelligent transport
	systems and road safety, various types of bridges.
	Watershed management. Roof top rainwater harvesting. Classification of dams,
	Water treatment and sewage treatment units, solid waste management.

Text and Reference books

- 1. PC Verghese "Building construction" 2nd PHI learning pvt ltd
- 2. NN Bask "Surveying and leveling" 2nd McGraw hill education
- 3. Garg SK "Irrigation Engineering and Hydraulics structures" 36th Khanna Publishers Delhi
- 4. Jai Krishna, Brijesh Chandra "Elements of earthquake engineering" 2nd South asian publishers
- 5. Shah Kale and Patki "Building Design and Drawing" 5th Tata McGraw Hill

Mapping of course outcomes with program outcomes and program specific outcomes

Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2				2			1			
CO2	3	2							1			
CO3	3	2				2			1			

1-low, 2-medium, 3-high

lead of the Computer Science and Engineering Department

Dean Academics

AMESC1002 -Engineering Mechanics						
Teaching Scheme Examination Scheme						
Lectures: 03 hrs/ week	ISE I*	10 Marks				
Credits: 02	ISE II*	10 Marks				
	End Semester Examination	30 Marks				

Prerequisites: Knowledge of vectors and scalars and preliminary knowledge of motion.

Course description: Engineering Mechanics is one of the basic subjects for the students of engineering, irrespective of their branches, since it help them to develop the logical thinking, analytical ability and enhance the imagination power. It introduces the students to various types of forces, their resultant, equilibrium of forces, analysis of various force system and the effect of forces on the state of motion of the body. Students will be exposed to C.G. and M.I. of the area and mass M.I of the bodies. They will also be exposed to dynamics of particle and rigid body.

Course Outcomes:

After completing the course, students will be able to:

	Course Outcomes
CO1	State and explain the relevant laws of statics and dynamics.
CO2	Determine resultant, identify the force system acting on bodies and perform static analysis of a given system.
CO3	Determine the centroid and compute moment of inertia of area and centroid of line.
CO4	Establish relations between kinematic parameters for different types of motion and compute the motion characteristics.
CO5	Apply the principles of kinetics to compute the motion parameters or related forces of a given system.

Head of the Computer Science and Engineering Department

Dean Academics

Detailed Syllabus:

Unit 1	Fundamental Concepts and Principles, Types of Force systems, Composition and Resolution of Forces, Moment of force, Couple, Resultant of Planar forces, Analytical and Graphical methods.
Unit 2	Free body diagrams, Equations of Equilibrium, Types of Supports and support reactions, Equilibrium of Co-planer force systems, Applications to beams, Theory and Laws of Friction, angle of friction, angle of repose, Cone of friction, application to plane friction.
Unit 3	Centroid of Plane figures and lines, Moment of Inertia of plane sections, Transformation theorems, Radius of gyration.
Unit 4	Kinematics of particles: Rectilinear Motion, Equations of Motion, Curvilinear motion in Cartesian and normal and tangential components, Motion of projectile.
Unit 5	Kinetics of particles: Newton's laws of Motion, D'Alembert's Principle, Equations of motion of particle motion of connected bodies. Principle of work and Energy, Principle of Impulse and Momentum and their applications to particles, Direct central impact.

Text Books

- 1. Beer and Johnston, Mechanics for Engineers (Statics and Dynamics), McGraw Hill Co.Ltd.
- 2. A.K. Tayal, Engineering Mechanics, Umesh publications.
- 3. V.S. Mokashi, Engineering Mechanics Vol. I and II, Tata McGraw Hill Publishing Co. ltd., New Delhi.
- 4. S.S.Bhavikutti and K.G. Rajashekarappa, Engineering Mechanics, New Age International (P) Limited Publishers, New Delhi.

Reference Books:

- 1. F.L. Singer, Engineering Mechanics, Harper and Row Publishers, USA
- 2. Timoshenko and Young, Engineering Mechanics, McGraw Hill Co.Ltd.
- 3. R.C. Hibbeler, Engineering Mechanics (Statics and Dynamics), McMillan publications
- 4. Engineering Mechanics by McLean and Nelson, Schaum's Outline Series, McGraw Hill Co.Ltd. New Delhi

Mapping of Course outcome with Program Outcomes and Program Specific Outcomes BE-Computer Science

Course	РО	РО	PO	РО	РО	PO	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
Outcome	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2										1				
CO2	2										1				
CO3	1										1				
CO4	2										1				

1: Low 2:Medium 3: High

BE-Information Technology

Course	PO	PSO	PSO	PSO											
Outcome	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2								1						
CO2	2								1						
CO3	1								1						
CO4	2								1						

1: Low 2: Medium 3: High

Assessment: 1) For assessment under ISE-I and ISE-II, two test of 10 marks each, Test-I and Test-II, will be conducted on prescribed syllabus (around first 1.5 to 2 Units for Test-I and 3^{rd} and some portion of 4^{th} Unit for Test-II).

Assessment Pattern:

Assessment	Knowledge	ISE I	ISE II	End Semester
Pattern	Level			Examination
Level No.				
K1	Remember	02	-	03
K2	Understand	02	02	03
K3	Apply	06	08	24
K4	Analyze			
K5	Evaluate			
K6	Create			
Total Marks 1	00	10	10	30

Head of the Computer Science and Engineering Department

ademic Council

Dean Academic

Assessment table:

Assessment Tool	K1, K2	K3	K2, K3	К3	К3
	CO1	CO2	CO2,CO3	CO4	CO5
ISE I (10 Marks)	04	06	1	-	-
ISE II (10Marks)	02		06	02	
ESE Assessment (30 Marks)	06	06	06	06	06
Total Marks (50 Marks)	12	12	12	08	06

Designed by

Dr. S. N. Deshmukh

EEESC1011: Basic Electrical Engineering						
Teaching Scheme	Examination Scheme					
Lectures: 2 Hrs/Week	ISE I : 10 Marks					
Credits: 02	ISE II : 10 Marks					
	End Semester Exam : 30 Marks					

Course description: On completion of this course, students will have knowledge of fundamentals of electrical Engineering. It includes the Kirchhoff's voltage law, current law, source transformation, network analysis methods and AC circuits.

Course Objectives:

- To offer basic understanding for solving circuits using KCL, KVL and network theorems.
- To explain DC circuits, magnetic circuits and AC circuits.

Course Outcomes

After completing the course, students will be able to:

CO1	K1	Define the terms related to network theorems, magnetic induction and AC circuits.
CO2	K2	Understand DC, AC and magnetic circuits.
CO3	К3	Apply concepts of DC, AC circuits for network analysis.

Detailed Syllabus:

Head of the Computer Science and Engineering Department

Approved in XXVIIth Academic Council

Unit 1	DC Circuits:
	Kirchoff's laws, Source conversion, series and parallel circuit, current and voltage
	division rule, Delta-star and star-delta conversion, Node voltage and Mesh current
	methods, Superposition theorem, Thevenin's and Norton's theorems, Maximum power
	transfer theorem. Charging and discharging of capacitor, Time constant for RC circuit
Unit 2	Electromagnetic Induction: Faraday's laws, statically and dynamically induced emf,
	self and mutual inductance, coefficients of coupling, dot convention, inductance in
	series and parallel, principle of operation, constructional details, types and applications
	of single phase Transformer, Induction motors, DC motors.
Unit 3	Single phase AC Circuits: Concept of single phase supply, Terms related with A.C.
	quantities, pure resistive, inductive and capacitive circuits, Complex and phasor
	representation of AC quantities, series and parallel circuits, introduction to resonance

TEXT AND REFERENCE BOOKS

- 1. Leonard Bobrow "Fundamentals of Electrical Engineering", Oxford University press.
- 2. Vincent Del Toro, "Principles of Electrical Engineering", Prentice Hall.
- 3. D.P. Kothari, I.J Nagrath, "Basic Electrical Engineering" Tata McGraw Hill.
- 4. M.S.Naidu, S.Kamakshaiah, "Introduction to Electrical Engineering" Tata McGraw Hill.
- 5. J.P.Tiwari, "Basic Electrical Engineering" New Age Publication.
- 6. Joseph Administer, "Schaum's outline of Electric circuits", Tata McGraw Hill.

Mapping of Course outcome with Program Outcomes (PO) and Program Specific Outcomes (PSO)

Course	PO	PSO	PSO	PSO											
Outcome	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	1	-	-	-	-	-	-	1	1	-	1	1	2	3
CO2	2	2	-	-	-	-	-	-	1	1	-	1	2	2	2
CO3	3	2	1	-	•	-	ı	-	1	1	-	1	2	2	2

3 - High, 2 - Medium, 1 - Low

Teacher's Assessment: Teachers Assessment of 10 marks is based on one of the / or combination of few of following

- 1) Simulation
- 2) Prototype development
- 3) Power point presentation of case studies
- 4) Question and answer / Numerical solution

Head of the Computer Science and Engineering Department

Dean According YWIIII Academic Council

Assessment Pattern

Assessment	Knowledge Level	Test 1	Teachers	End Semester
Pattern			Assessment/	Examination
Level No.			Assignment	
K1	Remember	04	00	06
K2	Understand	06	05	18
K3	Apply	00	05	06
K4	Analyze	00	00	00
K5	Evaluate	00	00	00
K6	Create	00	00	00
Total Marks	50	10	10	30

Assessment Table

Assessment Tool	K1	K2	К3
	CO1	CO2	CO3
Class Test (10 Marks)	04	06	00
Teachers Assessment (10 Marks)	00	05	05
ESE Assessment (30 Marks)	06	18	06

Head of the Computer Science and Engineering Department Dean Academics

CSESC1001: Programming for Problem Solving (for ENTC,CSE,IT)						
Teaching Scheme Examination Scheme						
Lectures: 03 hrs./ week	ISE I	15 Marks				
Credits:03	ISE II	15 Marks				
	ISE III	10 Marks				
	End Semester Examination	60 Marks				

Prerequisites: Nil

Course Objectives

- To understand the fundamentalsof computer systems and programming.
- To understand the basic programming paradigms.
- To learn the conditional branching, iteration and recursion.
- To learn methodology which are essential for developing C programs.

Course Outcomes

Students will be able to:

CO1	Understand fundamentals of computer systems and programming.
CO2	Implement the basic programming paradigms.
CO3	Develop the solutions for the range of problems using branching, looping & conditional statements
CO4	Apply advanced data types and use the concept of pointers, array of structures
CO5	Develop C programs for problem solving using different algorithms

Detailed Syllabus:

Unit 1	Introduction to programming: Components of a computer system: Memory, processor, I/O Devices, storage, operating system, Concept of assembler, compiler, interpreter, loader and linker. Idea of Algorithm: Representation of Algorithm, Flowchart, Pseudo code with examples, From algorithms to programs, source code. Programming Basics: Structure of C program, writing and executing the first C program, Syntax and logical errors in compilation, object and executable code. Components of C language. Standard I/O in C, and memory locations, Storage classes.
Unit 2	Introduction to C Language fundamentals: The C character set, variables and constants, data types, keywords, expressions, statements, precedence, operators- arithmetic operators, sizeof() and ternary operators, relational & logical operators, conditional operators, type conversions, type casting.

Head of the Computer Science and Engineering Department

Approved in XXVIth Academic Council

Unit 3	Conditional Branching, Loops and Function: if, nested if, it else, nested if else switch, goto statement, Loop execution – For loop, while loop, Do while loop, break, and continue statements. Functions - Defining a function, passing arguments to functions, call by value, idea of call by reference, returning values from function, command line arguments, Local & Global, Formal variables concept, Recursion.
Unit 4	Arrays: Array's definition (1-D, 2-D), passing array to the function, String Operation-String copy, String length, String concatenation, String compare, Basic Sorting Algorithms (Bubble, Insertion and Selection).
Unit 5	Structure and Pointers: Introduction to structure and union. Array of structure, Passing structure as an object to function. Structure as a return type of function. Pointers- pointer as a variable, pointer to array, pointer as argument to function, notion of linked list.

Text and Reference Books

- 1. E. Balagurusamy; Programming in C, 3rd ed, Tata McGraw Hill.
- 2. K. R. Venugopal and S R Prasad, Mastering C, 3rd ed, Tata McGrath Hill.
- 3. Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, 2nd ed, Prentice Hall of India.
- 4. Problem Solving and Program Design in C, by Jeri R. Hanly, Elliot B. Koffman, Pearson Addison-Wesley, 2006.
- 5. Let Us C By Yashwant P. Kanetkar.

Mapping of Course outcome with Program Outcomes and Program Specific **Outcomes**

Course	PO1	PO2	PO	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
outcomes			3									
CO1	1		1	3						2		
CO2	1		1	3				2	1	2		
CO3	1	3	1	2						2		
CO4	1	3	1	2						2	1	
CO5	1		1	3					1	1		2

Assessment:

ISE I:Class Test-I of Maximum Marks-15

ISE II:Class Test-II of Maximum Marks-15

ISE III:Teacher's Assessment of Maximum Marks-10

Teachers Assessment of 10 marks is based on one of the / or combination of few of following

- 1) Quiz
- 2) Question & answer
- 3) Power point presentation

4)Any other activity suggested by course coordinator

ESE: End Semester Examination of Maximum Marks-60

Assessment Pattern:

Assessment	Knowledge	ISE I	ISE II	ISEIII	End Semester
Pattern	Level				Examination
Level No.					
K1	Remember	05	00	00	12
K2	Understand	10	05	00	12
K3	Apply	00	10	00	12
K4	Analyze	00	00	05	12
K5	Evaluate	00	00	05	12
K6	Create	00	00	00	00
Total Marks 1	00	15	15	10	60

Assessment table:

Assessment Tool	K2	K3,k4
	CO1, CO2,CO3	CO3,CO4 ,CO5
ISE I (15 Marks)	15	0
ISE II (15Marks)	15	0
ISEIII(10)	00	10
ESE Assessment (60 Marks)	30	30
Total Marks 100		

Special Instructions if any: Nil

Head of the Computer Science and Engineering Department

Dean Academic

Approved in XXVIth Academic Counc

CSESC1005 : Programming for problem Solving	(for Civil and EE dept)	
Teaching Scheme Lectures: 02 hrs./ week	Examination Scheme ISE I	10 Marks
Credits:02	ISE II End Semester Examination	10 Marks 30 Marks

Prerequisites: Nil

Course Objectives

- To understand the fundamentals of computer systems and programming.
- To understand the basic programming paradigms.
- To learn the conditional branching, and iteration.
- To learn methodology which are essential for developing C programs.

Course Outcomes

Students will be able to:

CO1	Understand fundamentals of computer systems and programming.
CO2	Able to define data types and use them in simple data processing applications
	also he/she must be able to use the concept of pointers, array of structures
CO3	Develop confidence and ability for life-long learning needed for Computer
	language.

Detailed Syllabus:

Unit 1	Introduction to programming: Components of a computer system: Memory, processor,											
	I/O Devices, storage, operating system.Idea of Algorithm: Representation of Algorithm,											
	Flowcharts.											
	Programming Basics: Structure of C program, writing and executing the first C program,											
	Syntax and logical errors in compilation, object and executable code. Components of C											
	language. Standard I/O in C.											
Unit 2	Introduction to C Language fundamentals:											
	The C character set, variables and constants, data types, keywords, expressions, statements,											
	precedence, operators- arithmetic operators, sizeof(),relational & logical operators,											
	conditional operators, type conversions, type casting.											

Head of the Computer Science and Engineering Department Dea

Dean Academics

Unit 3 Conditional Branching, Loops and Functions: if, nested if, it else, nested if else switch, goto statement, Loop execution – For loop, while loop, Do while loop. Functions - Defining a function, passing arguments to functions, call by value, idea of call by reference, returning values from function. Array's definition (1-D, 2-D). Introduction to structure and union. Introduction to Pointers.

Text and Reference Books

- 1. E. Balagurusamy; Programming in C, 3rd ed, Tata McGraw Hill.
- 2. K. R. Venugopal and S R Prasad, Mastering C, 3rd ed, Tata McGrath Hill.
- 3. Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, 2nd ed, Prentice Hall of India.
- 4. Problem Solving and Program Design in C, by Jeri R. Hanly, Elliot B. Koffman, Pearson Addison-Wesley, 2006.
- 5. Let Us C By Yashwant P. Kanetkar.

CSBSC1003: Lab Chemistry									
Teaching Scheme Examination Scheme									
Practical: 02 Hrs/Week	ISEIII	25 Marks							
Credits: 1									

Course Outcomes:

After completion of this course students will be able to:

	Course Outcomes
CO1	Perform qualitative and quantitative determination of physical and chemical properties of lubricants, polymers and water used for domestic and industrial application.
CO2	Explain the objectives of experiments, perform the experiments, appropriately record the data and analyze the results with accuracy and precision.
CO3	Demonstrate laboratory skills by use of relevant instrument or modern analytical methods for analysis of chemical compounds.
CO4	Work effectively and safely in a laboratory environment in teams as well as independently.
CO5	Recognize the issues of safety regulations, ethical, societal, economical and environmental issues in the use of chemicals in their laboratory work.

List of the Experiments – Any eight from the following

Sr.	Title of the Experiments	Skill /	CO
No.		Knowledge	
		Level	
1	Determination of hardness of water by EDTA method.	S3/K2	CO3, CO4, CO2
2	Determination of BOD and COD of water sample	S3/K2	CO3, CO5, CO2
3	Determination of Cell Constant.	S3/K2	CO3, CO2
4	Determination of Acid Value of lubricant.	S1/K1	CO1, CO5, CO2
5	Determination of chloride content of water by Mohr's method	S1/K1	CO1, CO5, CO2
6	Determination of Viscosity of lubricating oils by Redwood Viscometer.	S3/K2	CO3, CO4, CO2
7	Determination of Flash & Fire point of lubricant oil.	S3/K2	CO3, CO4, CO2
8	To Determination P ^H value of solutions by indicator, Paper and by P ^H meter	S1/K1	CO3, CO5, CO2
9	Preparation of Phenol Formaldehyde Resin (Bakelite) /Urea formaldehyde resin.	S2/K2	CO2, CO4, CO5
10	Determination of Iron by colorimetric method.	S3/K2	CO3, CO2

11	Separation of chemicals by thin layer chromatography.	S2/K2	CO3, CO2
12	Dermination of strength of acids by Potentiometric titrations	S2/K2	CO1, CO4, CO5, CO2
13	Determination of Cloud & Pour point of lubricant oil.	S3/K2	CO3, CO2
14	To verify Lambert Beer's Law calorimetrically.	S3/K2	CO3, CO2
15	To determine Rf value and identify phenyl alanine & Glycine mixture by ascending paper chromatography.	S3/K2	CO3, CO2
16	Demonstration Of TLC/Paper chromatography	S2/K2	CO3, CO2
17	To determine conduct metrically, the strength of given HCl solution by titrating with standard NaOH solution.	S3/K2	CO3, CO2
18	To determine the empirical formula of ferric-5 sulpho salicylate complex by Jobs method.	S3/K2	CO3, CO2

CO-PO MAPPING

Course Outcome	PO1	PO2	PO3	P O4	P O5	PO6	P 07	P O8	PO9	PO1 0	PO 11	PO 12
CO1	1											
CO2	1			1	1		1	2			1	
CO3	1	2	2	2	3	2	1		2			2
CO4	2	3	1	3	2	1						2
CO5	1	2	2		3	1				2		2

1-Low, 2-Medium, 3-High

Head of the Computer Science and Engineering Department Dean Academics

CSESC1002: Lab Programming for Problem Solving (for ENTC,CSE,IT)								
Teaching Scheme	Examination Scheme							
Practical: 2Hrs/Week	ractical: 2Hrs/Week ISE III 25 Marks							
Credits:01								

Course Outcomes:

After completion of this course students will be able to:

	Course Outcomes
CO1	Understand the development environment for compiling, debugging, linking and executing a C program.
CO2	Analyzing the complexity of problems, Modularize the problems into small modules and then convert them into programs
CO3	Apply the in-built functions and customized functions for solving the problems.
CO4	Illustrate algorithms, flowcharts, and programs for problem solving
CO5	Demonstrate using of various technologies and tools for developing applications

List of the Experiments:

The student shall perform minimum ten experiments of the following using TURBO C&C++/ CodeBlocks

Sr. No.	Title of the Experiments	Skill / Knowledge Level	СО
1	Developing Flowchart and alorithm.	K2	CO1
2	Creating Pseudo code for C program.	K3	CO1
3	Simple program using scanf() and printf()	K3	CO2
4	Program using Control Statements	K3	CO2
5	Program using Loops	K3	CO2,CO3
6	Program to generate Fibonacci series and/or factorial of a number using recursive function	K3	CO3, CO4
7	Program using Switch-Case statement	K3	CO3,CO4

8	Using arrays for sorting numbers	K3	CO4
	-Write a C program to input elements in array and sort array elements		
	in ascending or descending order.		
9	Program which shows use of call by value and call by reference	K3	CO3 ,CO4
10	Program to accept and display student information using structure.	K3	CO4, CO5
11	Program to pass structure/array as a parameter to a function	K3	CO5
12	Program to prepare monthly telephone bill	K3	CO5
13	Menu driven program for matrix addition and subtraction	K3	CO5
14	Program for matrix multiplication	K3	CO5

Mapping of Course outcome with Program Outcomes and Program Specific Outcomes

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO
outcomes												12
CO1	3	2		2						1		
CO2	2		3	2						1		
CO3	2	2		2						3		
CO4	1	2		2		1				3	1	
CO5	1		3	2					3	3	1	1

1-Low, 2-Medium, 3-High

-lead of the Computer Science and Engineering Department

Approved in XXVIth Academic Council

Dated: 27th April 2023

Dean Academics

CSESC1006: Lab Programming for Problem Solving					
(for Civil and EE dept)					
Teaching Scheme Examination Scheme					
Practical: 2Hrs/Week	ISE III	25 Marks			
Credits:01					

Course Outcomes:

After completion of this course students will be able to:

	Course Outcomes			
CO1	Understand the development environment for compiling, debugging, linking			
	and executing a C program with the help of flowcharts and algorithms.			
CO2	Analyzing the complexity of problems, Modularize the problems into small			
	modules and then convert them into programs			
CO3	Apply the in-built functions and customized functions for solving the			
	problems.			

List of the Experiments:

The student shall perform minimum ten experiments of the following using TURBO C&C++/ Code Blocks

Sr.	Title of the Experiments	Skill /	CO
No.		Knowledge	
		Level	
1	Developing Flowchart and algorithm.	K2	CO1
2	Creating Pseudo code for C program.	K3	CO1
3	Simple program using scanf() and printf()	K3	CO1
4	Program using Control Statements	K3	CO2
5	Program using Loops	K3	CO2
6	Program to generate Fibonacci series and/or factorial of a number	K3	CO3
7	Using arrays for sorting numbers	К3	CO3
	-Write a C program to input elements in array and display the		
	elements.		
8	Program which shows use of call by value and call by reference	K3	CO3
9	Program to accept and display student information using structure.	K3	CO2
10	Menu driven program for matrix addition and subtraction	K3	CO3

CEESC1002: Lab Basic of Civil Engineering							
Teaching Scheme Evaluation Scheme							
Theory 2 Hrs/ Week		ISE III	25 Marks				
Total Credit	1						

Pre-requisites - Nil

Course Description: Objective of this course is to provide an insight and inculcate the essentials of civil engineering discipline to the students of all branches of Engineering and to provide the students an illustration of the significance of the civil engineering profession in satisfying the societal needs. Civil engineers plan, design, build, supervise and maintain infrastructure projects such as public and private utility buildings, roads, bridges, water supply and sewage treatment schemes, irrigation projects, etc. In this course the students will have to write the information of different civil engineering structures along with sketches wherever necessary. While drawing the sketches, students are expected to see the structures, measure the dimensions and conduct the practical If necessary.

Course Outcomes:

After completing the course, students will able to:

	Course outcomes
CO1	Explain terms related with building construction
CO2	Demonstrate the uses of basic surveying equipments
CO3	Explain the properties of materials and types of roads
CO4	Demonstrate construction equipments and term related with earthquake
CO5	Summarize the water, wastewater treatment units and types of dams.

Detailed syllabus:

The term work shall consist of at least 10 exercises of following nature. Individual subject teacher shall have freedom of including additional exercises.

1	Identify 5 ancient monuments and 5 modern marvels and list the uniqueness of
	each
2	Draw line plans of residential building/flats
3	Draw the plan and sectional elevation of door and window
4	Draw the plan and sectional elevation of staircase
5	Draw different types of foundations
6	Measure the dimensions of Room/Hall and furniture and write it
7	Find the level different between two stations by using level

8	Find out the latitude, longitude and reduced level of different stations, bearing of			
	line by using software apps			
9	Draw typical road sections in cutting and embankment			
10	Identify three top new materials and write their potential in construction			
11	Visit concrete technology laboratory/ strength of materials laboratory/			
	Geotechnical engineering laboratory and enlist the equipment and their uses.			
12	Explain the terms related with earthquake along with sketch			
14	Explain different types of construction equipments			
15	Draw the flow chart of water sewage treatment plant			
16	Draw the section of earthen and gravity dams			
17	Identify three different irrigation projects and write their features			
18	Draw different types of roof top rainwater harvesting works			
19	Enlist the different types of software used in civil engineering and their uses.			

Text and Reference books

- 1. PC Verghese "Building construction" 2nd PHI learning pvt ltd
- 2. NN Bask "Surveying and leveling" 2nd McGraw hill education
- 3. Garg SK "Irrigation Engineering and Hydraulics structures" 36th Khanna Publishers Delhi
- 4. Jai Krishna, Brijesh Chandra "Elements of earthquake engineering" 2nd South asian publishers
- 5. Shah Kale and Patki "Building Design and Drawing" 5th Tata McGraw Hill

Mapping of course outcomes with program outcomes and program specific outcomes

Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3			2		2			2			
CO2	3			2					2			
CO3	3			2		2						
CO4	3			2			2					
CO5	3			2			2					

1-low, 2-medium, 3-high

AMESC1003: Lab- Engineering Mechanics						
Teaching Scheme Examination Scheme						
Practical: 2Hrs/Week	Practical: 2Hrs/Week					
Credits:01 ISE III 25 Marks						

Course Outcomes:

After completion of this course students will be able to:

	Course Outcomes				
CO1	Apply graphical method to solve problems of statics.				
CO2	Demonstrate the principles of Engineering Mechanics experimentally and interpret the experimental results.				
CO3	Solve numerical examples in statics and dynamics.				

List of the Experiments/ Term Work

The student shall use graphical method to solve the problems of engineering mechanics (Sr. No. 1) and perform the experiments given below. They should also complete the tutorial problems of the subject Engineering Mechanics given by the teacher as a part of laboratory work.

Sr.	Title of the Experiments/Term Work	Skill /	CO	Marks for
No.		Knowledge		ISE
		Level		
1	Graphical solutions for the following problems a. Resultant of Coplanar Non Concurrent force system: i) At least one problem with resultant as a force ii) At least one problem with resultant as a couple b. Equilibrium of Coplanar Non Concurrent force system: At least one Problem c. Friction: At least one Problem	K2, K3	CO1	15
2	Following experiments shall be conducted.	K1, K2,	CO2	30

	 a. Polygon law of forces b. Law of moments c. Jib crane d. Beam reaction e. Friction f. Screw jack g. Fly wheel 	K3		
3	Tutorial Problems a. At least three problem on each unit of the theory course of Engineering Mechanics. b. The tutorial problem needs to be solved by the student during the practical hours only.	K1,K2, K3	CO3	05

ISE-III: Assessment will be done at the end of the term in similar manner **Assessment Pattern:**

Assessment Pattern	Knowledge Level	ISE I	End Semester Examination
Level No.			
K1	Remember	05	-
K2	Understand	15	-
K3	Apply	30	-
K4	Analyze	-	-
K5	Evaluate	-	-
K6	Create	-	-
Total Marks			-

Mapping of Course outcome with Program Outcomes and Program Specific Outcomes:

BE- Computer Science & Engineering

				0	0										
Course	PO	PS	PS	PS											
Outcome	1	2	3	4	5	6	7	8	9	10	11	12	O 1	O 2	O 3
CO1	1	1									1				
CO2	2	3									1				
CO3	2	1									1				

1: Low 2: Medium 3: High

Designed by

Dr. S.N. Deshmukh

Head of the Computer Science and Engineering Department

Dean Academics

EEESC1012: Lab Elements of Electrical Engineering							
Teaching Scheme Examination Scheme							
Practical: 2Hrs/Week ISE III 25 Marks							
Credit:1							

Course Outcomes:

After completion of this course students will be able to:

	Course Outcomes
CO1	Apply electrical safety measures in the laboratory
CO2	Verify various electric laws and theorem to determine the electric circuit and electromagnetic circuit parameters
CO3	Determine the relationship of various electric circuit parameters
CO4	Demonstrate the basic concepts of electromagnetic induction and ac circuits
CO5	Demonstrate the fundamental and working of electrical machines

List of the Experiments

The student shall perform minimum EIGHT experiments from the following list

Sr.	Title of the Experiments	Skill /	СО	Marks
No.		Knowledge		for ISE
		Level		
1	Introduction of tools, electrical materials, safety	K1,K2,K3	CO1, CO2,	3
	procedure, symbols and abbreviations		CO3,	
2	Perform an experiment for the verification current	K2	CO1, CO2,	3
	and voltage in series and parallel circuit		CO3,	
3	To Perform an experiment for the demonstration	K2	CO1, CO2,	4
	of electromagnetic induction phenomenon		CO3, CO4	
	OR			
	Describe one experiment to demonstrate the			
	phenomenon of electromagnetic induction.			
4	Perform an experiment for Verification	K2	CO1, CO2,	3
	ofThevenin's theorem and Norton's theorem		CO3	
5	Perform an experiment for Verification of	K2	CO1, CO2,	3
	Superposition theorem,		CO3	

ead of the Computer Science and Engineering Department

Dean Academics

Approved in XXVIth Academic Counci

6	Perform an experiment for Verification of		CO1, CO2,	
	Maximum power transfer theorem		CO3	
7	To Perform an experiment to plot hysteresis loop/B-	K2	CO1, CO2,	3
	H curve of magnetic material		CO3, CO4	
8	To perform experiment for Measurement of current,	К3	CO1, CO2,	4
	voltage and power in R-L-C series exited by single		CO3, CO4	
	phase AC supply			
9	To Study the R-L-C series resonance circuit	K2	CO1, CO2,	3
			CO3, CO4	
10	To demonstrate the construction D.C. Shunt motor.	K2	CO1, CO2,	3
			CO3, CO5	
11	To perform the load test on 1 phase transformer	К3	CO1, CO2,	4
			CO3, CO5	

NOTE : The students will be required to perform the 8 experiments from the above list and any other relative experiments designed on the basis course

Assessment Pattern:

Assessment	Knowledge Level	ISE I	ISE II
Pattern Level No.			
K1	Remember	5	5
K2	Understand	10	10
K3	Apply	10	10
K4	Analyze		
K5	Evaluate		
K6	Create		
Total Marks		25	25

Assessment	Assessment Knowledge Level		ISE II
Pattern Level No.			
S1	Imitation	5	5
S2	Manipulation	10	10
S3	Precision	10	10
S4	Articulation		
S5	Naturalization		
Total Marks		25	25

Head of the Computer Science and Engineering Department

Dean Academics

Mapping of Course outcome with Program Outcomes and Program Specific Outcomes

Course	РО	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	PO	РО
outcome	1									10	11	12
CO1	2				1	3	2	2	3	2	1	2
CO2	3	1		1	1	2	2	2	3	2	1	2
CO3	3	1		1	1	2	2	2	3	2	1	2
CO4	3	1		1	1	2	2	2	3	2	1	2
CO5	2	1		1	1	2	2	2	3	2	1	2

 $3 - High \qquad 2 - Medium \qquad 1 - Low$

ITVSE1001: Computer Workshop							
Teaching Scheme	Examination Scheme						
04Hrs/Week	ISE I, II , III :50 Marks						
Total Credits:2							

Module1:Introduction to Computer Hardware devices:

Introduction and working of basic components: Motherboard, Processor, Memory and SMPS. Introduction and working of peripheral devices Keyboard, Mouse, Monitor, DVD Drive and Hard Drive. Understand system configuration. Step by step assembling and de-assembling a desktop computer.

Module2: Booting and Installation:

Understand BIOS setup and booting process. Installation of operating system and external devices using device drivers.

Module3:Computer maintenance and troubleshooting:

PC Maintenance: Creating data backup drives, Understanding Hard Disk Drive Space, Running the Disk Cleanup Program, Running the Disk Defragmenter Program

Audio, Video, Display (Monitor), Hard Disk Drive, Hardware Installation, Internet Access, Keyboard and Mouse, Power, Performance

Head of the Computer Science and Engineering Department

Dean Academics

Module4:Introduction to computer network components

Introduction of network components and their functions: Types of transmission mediums, switches and routers, modems. Model network topologies, Understand Types of networks, ,IP Addressing.

Module 5: LAN setup and Internet connectivity

Prepare Ethernet cables for networking. Set up wired LAN and wireless LAN with and without Internet access.

Module 6. Fundamentals of visualization and analysis

Introduction to spreadsheet applications and Excel interface. Perform Basic spreadsheet operations and functions. Construction of tables to organize data and introduction to charts. Constructing various Line, Bar and Pie charts. Understanding and constructing Histograms and Scatterplots. Introduction to ICT tools

Course	PO	PO	PO3	PO	РО	PO	PO	PO	PO	PO1	PO	PO	PSO	PSO	PSO3
Outcom	1	2	Des	4	5	6	7	8	9	0	11	12	1	2	
e	Kn	Pro.	ig	Inv	M	Soc	En	Et	Tea	Com	Mg	Lon			
	owl	Ana		est	od.	i	vi	hic	m	m	mt	g			
	edg	lysi		i	То			S							
	e				ols										
CO1	1														
CO2	1			1	1		1	2			1				
CO3	1	2	1	2	1				2			2			
CO4	1	3	1	3								2			
CO5	1	2	1		1					2		2			

3 - High 2 - Medium 1 - Low

Head of the Computer Science and Engineering Department

Approved in XXVIth Academic Coun

CSIKS1003: Indian Knowledge System

Teaching		Evaluation Scheme	
Scheme			
Lectures	2 Hrs/Week	ISE I	10 Marks
Tutorial	0	ISE II	10 Marks
		ISE III	00 Marks
Total Credits	2	ESE	30 Marks

Course description: The course aims to provide an appreciation of IKS and its relevance to contemporary society requires a two-part study of IKS. The first is to develop an overall understanding of some key components of IKS. This is important before we explore the nature of applications. Therefore, module one of the course provides a quick introduction to the key components of IKS. The second aspect is the application of IKS for some gainful use.

Course Outcomes:

After successful completion the course, students will be able to:

	Course Outcomes
CO1	Explain the historicity of Indian Knowledge System and the broad classification of
	Indian philosophical systems.
CO2	Discuss how Sanskrit can be used for natural language processing.
CO3	Describe the characteristics of the Indian number system and how it has helped improve
	science and technology.
CO4	Illustrate the basic elements of the Indian calendar

Detailed Syllabus:

Unit 1	An overview of Indian Knowledge System (IKS): Importance of Ancient Knowledge -							
	Definition of IKS - Classification framework of IKS - Unique aspects of IKS. The vedic							
	corpus: Vedas and Vedangas - Distinctive features of vedic life. Indian philosophical systems:							
	Different schools of philosophy.							
	The knowledge triangle: Prameya, Pramaṇa, Saṃsaya - Framework for establishing valid							
	knowledge - Potential fallacies in the reasoning process.							
Unit 2	Salient features of the Indian numeral system - Importance of decimal representation - The							
	discovery of zero and its importance - Unique approaches to represent numbers. Unique aspects							
	of Indian mathematics - Great mathematicians and their significant contributions in the area of							
	arithmetic, algebra, geometry, trigonometry, combinatorial problems in Chandaḥ-sastra of							
	Pingala, binary mathematics and Magic squares in India.							

Head of the Computer Science and Engineering Department Dean Academics

Unit 3	Linguistics: Components of a language - Paṇini's work on Sanskrit grammar - Phonetics in
	Sanskrit and the role of Sanskrit in natural language processing.
	Highlights of Indian Astronomy: Historical development of astronomy in India - The Celestial
	Coordinate System - Astronomical terminologies - Equinotical points, precession of eqinoxes,
	movable and fixed zodiac - Elements of the Indian Calendar - Panchanga.

Text Books and Reference Books

- 1. A. K. Bag, History of Technology in India, Vol. I, Indian National Science Academy, New Delhi, 1997.
- 2. D.N. Bose, S.N. Sen and B. V. Subbarayappa, A Concise History of Science in India, Indian National Science Academy, New Delhi, 2009.
- 3. B. Datta and A. N. Singh, History of Hindu Mathematics: Parts I and II, Asia Publishing House, Bombay, 1962.
- 4. M. Hiriyanna, M., Outlines of Indian Philosophy, Motilal Banarsidass, New Delhi, 1994. 5. B. Mahadevan, Vinayak Rajat Bhat, and R.N. Nagendra Pavana, Introduction to Indian Knowledge System: Concepts and Applications, PHI Learning Private Limited, New Delhi, 2022.
- 6. S. N. Sen and K. S. Shukla, History of Astronomy in India, Indian National Science Academy, 2nd edition, New Delhi, 2000.

Mapping of Course outcome with Program Outcomes

Course	PO	PO	PO	P	PO	PS	PS	PS							
Outcom	1	2	3	О	5	6	7	8	9	10	11	12	O1	O2	O3
e				4											
CO1															
CO2															
CO3															
CO4															
CO5															

$3 - High \quad 2 - Medium \quad 1 - Low$

Teacher's Assessment: Teachers Assessment of 10 marks is based on one of the / or combination of few of following

- 1) Tutorials
- 2) Problem Solving
- 3) Power point presentation of case studies
- 4) Question & answer / Numerical solution

Assessment table

Head of the Computer Science and Engineering Department

Dean Academics

Assessment Tool	K1	K2	K3	K1	K3
	C01	C02	C03	CO4	CO5
ISE I& II (20 Marks)	10	10			
ESE Assessment (30 Marks)	10	10	10		
Total (50 marks)					

Special Instructions if any: Nil

INCCC1001: YOGA							
Co Curricular Course (Liberal Learning Course)							
Teaching Scheme: 04 hrs./ week							
Tutorial: 00 hrs./ week							
Credits: 02	ISE-III	50 Marks					

Course Description: Yoga - In today's stressful life, there is much more need to experience relaxation and remain focused. The inner connect is very much needed to retain stability. Beyond physical exercise there is much more to do in the field of Yoga. The content of this course includes Yoga, Pranayam, Meditation, Relaxation, rejuvenation and connection with our own self. The introduction of such an experiential course helps to boost self confidence and with regulation of mind through meditation improves concentration. Meditation is basically training of mind and helps to regulate it. Along with experiential learning, the students are also exposed to learning's contained in the supported literature.

Course Outcomes:

After completing the course, students will be able to:

CO1	Understand and perform Yoga Asana
CO2	Gain knowledge about Pranayama and perform it.
CO3	Apply the concept of Mediation in everyday life and studies

Syllabus:

- (1) Perfection in at least 3 types of Yoga-asana(Trikonasan, Konasan and Ushtrasan)
- (2) Perfection in at least 3 types of Pranayama (Anulom-Vilom, Bhramari and Kapalbhati)
- (3) Regular practice of Yoga-asanas, Pranayam and Meditation for 10 minutes during the allotted periods as per the time table and daily at home.

Science and Engineering Department Dean Academics

Text Books:

- 1)The Heartfulness way", Heartfulness Kamlesh Patel and Joshua Pollock
- 2) The Yoga Sutras of Patanjali Sri Swami Satchidananda
- 3)The Yamas and Niyamas Deborah Adele
- 4) Yoga Practices for Anxiety and Depresion --- H. R. Nagendra & R. Nagarathana

Assessment:

The evaluation is based on participating and performing Yoga, Pranayam and meditation regularly and perfectly under the guidance by Yoga Teachers in class as per schedule. Meditation trainers will observe intrinsic goodness, right attitude and happy and joyous way of doing things..

Head of the Computer Science and Engineering Department

Dean Academics

Semester II

MABSC1003: MATHEMATICS II							
Teaching Scheme Examination Scheme							
Lectures: 03 hrs/ week	ISE I*	15 Marks					
Tutorial: 01 hrs/ week	ISE II*	15 Marks					
Credits:04	ISE III*	10 Marks					
	End Semester Examination	60 Marks					

Course description:

Mathematics II is a compulsory course for all the First Year B.Tech. students of the institute as per NEP.

Course Outcomes:

After completing the course, students will be able to:

	Course Outcomes	Bloom's	Unit
		Taxonomy	
		Level	
CO1	Define first order first degree ordinary differential equations,	K1	1,2,3,4,5
	orthogonal trajectories; partial derivatives, Jacobian, Directional		
	Derivative, Gradients, Curl and divergence; Multiple integrals;		
	Fourier Series.		
CO2	Summaries the First order First degree Linear Differential	K2	1,2,3,4
	Equations; Partial, Total Derivatives; methods of solving		
	Multiple Integrals; Fourier Series and Half Range Fourier series		
	Expansion.		
CO3	Identify Order of Differential Equation and exactness;	K2	1,2,4,5
	Homogeneous function, Gradient, Divergence and Curl; Even		
	and odd functions, Euler's coefficients for the Fourier Series.		
CO4	Solve the First order Linear Differential Equations, Jacobians,	K2	1,2,3,5
	Maxima and Minima of functions of two variables; Double and		
	Triple Integrations; vector integration		
CO5	Apply knowledge of Differential equation to different	К3	1,2,3,4,5
	Engineering Problems, Partial derivative; Multiple Integrals to		
	find area and volume of solids; surface integral and volume		
	integral using Green's theorem and Stoke's theorem, Fourier		
	Series to Harmonic Analysis.		

Head of the Computer Science and Engineering Department

Approved in XXVIth Academic Council
Dated: 27th April 2023

Dean Academic

Detailed Syllabus:

Unit 1	First order ordinary differential equations and its applications							
	Exact, linear and Bernoulli's equations, application of first order ordinary differential equations: orthogonal trajectories, simple electrical circuit, D'Alembert's principle, one dimensional conduction of heat.							
Unit 2	Multivariate Calculus [Differentiation]							
	Limit, continuity, partial derivatives, Euler's theorem on homogeneous functions, implicit functions, composite functions, total derivatives, Jacobians and their applications, error and approximations, maxima and minima of functions of two variables, saddle points, Lagrange's method of undermined multipliers.							
Unit 3	Multiple integrals and its applications							
	Double and triple integrals (Cartesian and polar), change of order of integration in double integrals, change of variables (Cartesian to polar), applications: to find area and volume.							
Unit 4	Fourier Series							
	Fourier Series (Dirichlet's conditions), Periodic functions, convergence of the Fourier series, Euler's formula, Fourier series expansion with period 2π , $2L$, Fourier series of even and odd functions, Half range sine and cosine series, applications to harmonic analysis.							
Unit 5	Vector Calculus							
	Directional Derivative, Gradients, Curl and divergence. Vector integration: Line integral, Surface integral and volume integral, Green's Theorem, Gauss Divergence Theorem and Stoke's Theorem.							

Text Books

- 1. Erwin Kreyszing, Advanced Engineering Mathematics, 10th Edition, Mumbai : Willey Eastern Ltd. 2015.
- 2. B. S. Grewal ,Higher Engineering Mathematics, 44th Edition, New Delhi : Khanna publication, 2017.
- 3. Ramana B.V.Higher Engineering Mathematics, 11th Reprint, New Delhi : Tata McGraw Hill, 2010.
- 4. David Poole, Linear Algebra : A Modern Introduction, 3rd Edition, USA : BROOKS/COLE CENGAGE Learning, 2011.
- 5. Ravish R. Singh, Mukul Bhatt, Engineering Mathematics- A tutorial approach, 4th Edition, New Delhi: Tata McGraw Hill Education Pvt. Ltd.2018.

Reference Books

1. Dass H.K. Advanced Engineering Mathematics, 22nd Edition, New Delhi: S. Chand publications, 2018.

2. P. N. Wartikar and J. N. Wartikar, A text book of Engineering Mathematics (Vol. 1 & 2), Reprint, Pune: Pune VidhyarthiGrihaprakashan, 2013.

Mapping of Course outcome with program outcomes

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
outcome												
CO1	2	2	1									1
CO2	2	2	1									1
CO3	2	2	1									1
CO4	2	3	1		2							1
CO5	3	3	1		2							1

(Values in the mapping tables: 3 –HIGH,2 – MEDIUM, 1 – LOW)

Assessment: ISE I, II, III (Class Test-1, Class Test-2, TA) & ESE TA: Students will perform one or more of the following activities

- 5. Surprise Test
- 6. Assignment using Mathematical tools like Mathematica/ MATLAB or similar.
- 7. Ouiz
- 8. Any other activity suggested by course coordinator.

Assessment Pattern:

Assessment	Knowledge	ISE I (Class	ISE II (Class	ISE III (TA +	End Semester
Pattern Level	Level	Test-1)	Test-2)	Surprise Test)	Examination
K1	Remember	5	5		10
K2	Understand	10	10	2	38
K3	Apply			8	12
K4	Analyze				
K5	Evaluate				
K6	Create				
Total Marks 10)0	15	15	10	60

Designed by

Prof. S. P. Atipamulu

Prof. S. D. Gadhire

Head of the Computer Science and Engineering Department

Dean Academics

proved in XXVIth Academic Council

PHBSC1002: Optics, Semiconductors and Quantum mechanics									
Teaching Scheme Examination Scheme									
Lectures: 3 hrs/week	ISE I	15 Marks							
Credits: 3	ISE II	15 Marks							
	ISE III	10 Marks							
	End Semester Examination	60 Marks							

Course description: The course is mandatory course for first year B. Tech. Electronics and Telecommunication, Computer Science & Engineering and Information Technology programs for second semester. The course objective is to learn fundamental principles in Physics and to relate it real life situations.

	Course Outcomes	Bloom's Taxonomy level
CO1	Define thin film interference, Fraunhofer diffraction, resolving power, double refraction, spontaneous and stimulated emission, numerical aperture, acceptance angle of optical fibre, electric and magnetic fields, polarization, types of energy bands, group and phase velocity	K1
CO2	Explain the concepts interference, diffraction, polarization, optical resonator, propagation of light, semiconductors, uncertainty principle, Schrodinger wave equations	K2
CO3	Illustrate the engineering applications of interference, diffraction, polarization, lasers in industrial and medical applications, fibre optic sensors, semiconductors, uncertainty principle	K3
CO4	Identify, formulate and solve physical problems related to engineering	K4
CO5	Apply the fundamental principles of interference, diffraction, polarization, laser, optical fibre, semiconductors, quantum mechanics in engineering context	K5

Detailed Syllabus:

Unit 1	Optics- (12 L)									
	Interference- interference due to thin film of uniform thickness, wedge shaped									
	film, newton's rings formation and theory, anti-reflection coating.									
	Diffraction- fraunhofer diffraction at single slit (geometrical method), conditions									
	for maxima and minima, double slit diffraction, plane diffraction grating,									
	rayleigh's criterion of resolution, resolving power of grating.									
	Polarization- polarization by reflection, polarization by double refraction, phase									
	difference and path difference, quarter wave plate, half wave plate, superposition									

	of e-ray and o-ray, production of circularly and elliptically polarized light, polaroid sheets.
Unit 2	Laser and Fibre optics- (8 L)
	Laser- absorption, spontaneous and stimulated emission of radiation,
	meta-stable state, population inversion, pumping schemes, lasing action, optical
	resonator, construction and working of He-Ne gas laser, CO2 laser, industrial and medical applications.
	Fibre optics- principle and propagation of light in optical fibre, numerical
	aperture and acceptance angle, types of optical fibres (material, refractive index,
	mode), fibre optical communication system (block diagram), fibre optic sensor
Unit 3	Semiconductors- (8 L)
	band theory of solids, classification of solids on the basis of energy band theory,
	Fermi Dirac statistics, concept of Fermi level and its variation with temperature,
	density of states, position of fermi level in intrinsic semiconductor (with derivation) and in extrinsic semiconductor, conductivity of semiconductor,
	working of P-N junction from energy band diagram- forward and reverse biased,
	Hall effect in semiconductor.
Unit 4	Quantum Mechanics- (8 L)
	de-Broglie's hypothesis of matter waves, properties of matter waves, wave
	packet, phase velocity and group velocity, wave function, physical interpretation
	of wave function, Heisenberg's uncertainty principle, nonexistence of electron in nucleus, Schrodinger time dependent and time independent wave equations,
	particle in an one dimension and three dimension potential well.
Unit 5	Electromagnetic waves- (4 L)
	The wave equation, plane electromagnetic waves in vacuum, their transverse
	nature and polarization, relation between electric and magnetic fields of an
	electromagnetic wave, energy carried by electromagnetic waves.

Text and Rereference books:

- 1. M. N. Avadhanulu, and P. G. Kshirsagar. *A Textbook Of Engineering Physics*, 5th ed. NewDelhi: S.Chand and company Ltd., 2014
- 2. R. K. Gaur, S. L. Gupta. *Engineering Physics*, 14th ed. NewDelhi: Dhanpat Rai and Sons Publications, 2012
- 3. M. R. Srinivasan, *Physics For Engineers*, 2nd ed. NewDelhi: New Age International Publishers, 2009.
- 4. D. Halliday, and R. Resnic. *Fundamentals of Physics*, 9th ed. Noida: John–Wiley and Sons, 2010
- 5. Arthur Beiser, Perspectives of modern Physics, Mc-Graw Hill, US, 1969

Dean Academics

Mapping of Course outcome with Program Outcomes and Program Specific Outcomes

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Outcomes												
CO1	2									2		
CO2	2											
CO3	2											
CO4	2											
CO5	2											

1- Low, 2- Medium, 3- High

Assessment: ISE I-Class Test-I of Maximum Marks-15

ISE II-Class Test-II of Maximum Marks-15

ISE III- Teacher's Assessment:

Teachers Assessment of 10 marks is based on one of the / or combination of surprise test, assignment, quiz, any other activity suggested by course coordinator

ESE-End Semester Examination of Maximum Marks-60

Assessment Pattern:

Assessment Pattern Level	Knowledge Level	ISE I	ISE II	ISE III	End Semester Examination
K1	Remember	5	5	2	12
K2	Understand	5	5	6	18
K3	Apply	5	5	2	12
K4	Analyze				12
K5	Evaluate				6
K6	Create				
Total Marks 100		15	15	10	60

Assessment table:

Course Outcome	CO1	CO2	CO3	CO4	CO5
Assessment Tool	K1	K2	К3	K4	K5
ISE I Class Test-I (15 Marks)	5	5	5		
ISE II Class Test-II (15 Marks)	5	5	5		
ISE III TA (10 Marks)	2	6	2		
ESE Assessment (60 Marks)	12	18	12	12	6
Total Marks 100	24	34	24	12	6

Head of the Computer Science and Engineering Department De

Dean Academics

proved in XXVIth Academic Counc

MEESC1006: Basics of Mechanical Engineering (For CSE/IT)								
Teaching Scheme Examination Scheme								
Lectures:02Hrs / Week	ISEI	10 Marks						
Credits:02 ISEII 10 Mark								
End Semester Examination 30 Marks								

Prerequisites: Nil

Course Description: After completing this course student will have a fundamental understanding of the thermodynamics, thermal machine source of energy, power transmission elements, identify manufacturing process and machines

Course Outcomes:

After completing the course students will able to

Cours	ourse Outcomes								
CO1	Explain basic concepts to be used in Mechanical Engineering								
CO2	Apply the principles of thermodynamics to solve numerical problems								
CO3	Compare the working principles of Energy conversion devices with their application								
	in Mechanical Engineering								
CO4	Explain the working principles of various transmission elements and basic								
	mechanism employed in Mechanical Engineering.								
C05	Compare the manufacturing Process based on the required application								

Detailed Syllabus:

Unit 1	Fundamentals of Thermodynamics
	Pressure and pressure measurement, Temperature, Forms of energy, work transfer,
	heat transfer, Laws of thermodynamics, First law for cyclic and non-cyclic
	process, Concept of Heat Engine, Refrigerator and Heat pump, Statement and
	explanation of Fourier's law of heat conduction, Overall heat transfer coefficient,
	Newton's law of cooling, Stefan Boltzmann's law, Concept of heat exchanger,
	types of heat exchanger, and concept of effectiveness.
Unit 2	Energy Conversion Devices
	Steam generation process, Boiler: Mountings and accessories, working principles
	of Internal combustion Engine, two stoke and four stroke engines, Refrigeration –
	Definitions – Refrigerating effect, Ton of Refrigeration, COP, Relative COP, unit
	of Refrigeration. Principle and working of vapour compression refrigeration

	Principles and working of steam power plant and nuclear power plant.								
Unit 3	Fundamentals of Power Transmitting Elements and Mechanism								
	Working principles of shaft, Axle and Spindles. Friction clutches, Brakes – types								
	of brakes, Couplings-types of couplings, Bearing- types of bearing, Drives- Belt								
	drive: Flat and V belt drive, Open and Cross belt drive, Chain drive, Gears-								
	classification of gears, Simple mechanism: Slider crank mechanism, Pendulum								
	pump, Oscillating cylinder engine, Whitworth quick return mechanism								
Unit 4	Fundamentals of Manufacturing Process								
	Fundamentals of manufacturing process and their application, Casting, forging,								
	soldering, Brazing and welding. Differences between soldering, brazing and								
	Welding. Description of Electric Arc Welding and Oxy-Acetylene Welding,								
	Adhesives.								

Text and Reference Books

- 1. Nag P.K., "Engineering Thermodynamics", 3rd ed. Tata-McGraw Hill Publications, 2013.
- 2. Rajput R.K., "Engineering Thermodynamics", 4th ed. Laxmi Publications, 2014.
- 3. Hajra Choudhary, Bose, "Work Shop Technology (Vol.-I &JI)", 3rd ed. MPP publication, 2018.
- 4. Bhandari V.B., "Machine Design", 3rd ed. Tata-McGraw Hill Publications, 2019.
- 5. Khurmi R.S., "Machine Design",4th Edition. Eurasia Publishing House, 2019.
- 6. Domkundwar V.M. "Engineering Thermodynamics", 4th ed. Dhanpatrai Publication, 2020.
- 7. Rao P.N, "Manufacturing Technology Volume J", 3rd ed. Tata-McGraw Hill Publications, 2019
- 8. Holman J. P., "Heat transfer", McGraw Hill Publishing, New York

Mapping of Course outcomes with Program outcomes:

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Outcomes												
CO1	1	2										
CO2	3	1				1						
CO3	1					1						
CO4	1					1						
CO5	1					1						

1 - Low, 2 - Medium, 3 - High

Head of the Computer Science and Engineering Department

Doan Academics

MEESC1001:Engineering Graphics				
TeachingScheme	Examination Scheme			
Lectures:02Hrs /Week	ISEI	10Marks		
Credits:02	ISEII	10Marks		
	EndSemesterExamination	30Marks		

Prerequisites:Nil

Course Description: All engineering activities (design/ manufacturing/ operation/ servicing) for any product from any discipline involve a team of people who communicate graphically. Hence, every engineer must have exposure and some competence in presenting ideas as pictures, and be able to unambiguously interpret drawing from others. This course will help develop basic visualization competency as well as ability to representing ideas on both paper and computer.

Course Outcomes:

After completing the course students will able to

	Theoreting the educate students will use to		
Course	Course Outcomes		
CO1 Understand concept of projection of line application in design.			
CO2	Apply the concept to draw the basic views related to projections of Planes		
CO3	Gain knowledge about orthographic projections		
CO4	Sketch the different concepts of isometric projections		

Detailed Syllabus:

Unit 1	Projections of Lines and Planes
	Projections of Straight Lines: Introduction to point, Projections of points in four quadrants,
	projections of points in reference plane, Introduction and concept of line, cases: - line
	parallel to both the plane, line parallel to one plane and perpendicular to the other.
	Plane cases: surface parallel to one reference plane and perpendicular to other reference
	plane, plane surface inclined to one reference plane and perpendicular to other reference,
	projections of planes inclined to both reference planes
Unit 2	Orthographic Projections:
	Types of lines, methods of dimensioning and types of dimensioning, Principle of
	orthographic projections (First and third angle orthographic projection methods) Exercise
	shall be consist of orthographic projection of different machine parts problem by first angle
	orthographic projection methods, all types sectional orthographic projections (First angle
	orthographic projection methods). Sectional view problem shall be solving consist of various
	mechanical components and by First angle orthographic projection methods.
Unit 3	Isometric view:
	Isometric Views: Introduction to pictorial views, isometric scale, isometric projections and
	different machine parts isometric views problems on various mechanical components.

Text andReferenceBooks

- 1. Engineering Graphics with an introduction to computer aided drafting, vol. I & II, H. G. Phakatkar, Nirali Prakashan, Pune. Feb 2007 onwards.
- 2. A Text book of Engineering Drawing, P.J. Shah, S. Chand & company Ltd., New Delhi. 2009
- 3. Engineering Drawing, R. V. Mali & Chaudhari, Vrinda Publication, Jalgaon 1998 onwards.
- 4. Kulkarni, D. M., Rastogi, A. P. and Sarkar, A. K., Engineering Graphics with AutoCAD, PHI 2009
- 5. Engineering Drawing and Graphics + Autocad, K. Venugopal, New Age International Publishers, New Delhi, 2007
- 6. Engineering Drawing, Bhatt N. D., Panchal V. M., Charotar Publishing House 2008 onwards
- 7. Engineering Graphics, Vol.-I and Vol.-II, Dhabhade M. L., Vision Publications 2003 onwards
- 8. Engineering drawing P.S Gill, S. K. Kataria publication.2012 onwards.

Assessment:

ISE I: Shall be on the basis of Class Tests / Assignments / Quizzes / Field visits / Presentations / Course Projects on first and second unit.

ISEII: Shallbe based onclass test on third and fourth units.

AssessmentPattern:

Assessment Pattern LevelNo.	KnowledgeL evel	ISEI	ISEII	End SemesterExa mination
K1	Remember			
K2	Understand	5	5	9
К3	Apply	5	5	12
K4	Analyze			9
K5	Evaluate			
K6	Create			
TotalMarks50)	10	10	30

Head of the Computer Science and Engineering Department

Approved in XXVIth Academic Council

Dated: 27th April 2023

Dean Acade

Assessment table:

AssessmentTool	K2, K3	K2, K3	K2, K3	K4
	CO1	CO2	CO3	CO4
ISEI(10 Marks)	5	5		
ISEII (10Marks)			10	
	K2 to K4	K2 to K4	K2 to K4	K2 to K4
ESEAssessment(30 Marks)	6	6	6	6
TotalMarks 50	11	11	16	6

Mapping of Course outcomes with Program outcomes:

					-							
Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Outcomes												
CO1	1				3							
CO2		2		1						2		
CO3												
CO4	3					1						
CO5												

1 - Low, 2 - Medium, 3 - High

ETES1003: Basics of Electronics Engineering				
Teaching Scheme Examination Scheme				
Lectures: 3 Hrs/Week	ISE I*	15 Marks		
Credits: 03	ISE II*	15 Marks		
	ISE III*	10 Marks		
	End Semester Examination	60 Marks		

Prerequisites:None

Course description:

After completing this course, students will have a broad and fundamental understanding of basic electronics. Students will be able to discuss the basic concepts of various electronics devices and communication techniques with some basic applications.

Course Objectives:

- To impart knowledge of basic electronics devices and its applications
- To create awareness of electronics communication concept
- To introduce basic concepts of consumer electronics and instruments

Course Outcomes:

Head of the Computer Science and Engineering Department

Dean Academi

After completing the course, students will able to:

	Course Outcomes
CO1	Describe the working principle of electronic diodes and transistors
CO2	Explain transistor configurations, their comparison and FET devices
CO3	Understand working of transistor as an amplifier and transistor as switch
CO4	Explain number system and logic gates
CO5	Describe arithmetic operations using digital logic
CO6	Illustrate difference between combinational and sequential logic

Detailed Syllabus:

Unit 1	Diodes : -PN junction diode, diode characteristics, diode as rectifier, half wave
	and full wave rectifier, bridge rectifier, Zener diode Operation, zener regulator,
	LEDs and Photo Diode
Unit 2	Transistors: Bipolar junction transistors, NPN & PNP transistors, structure, working of NPN transistor. Transistor configurations: common base(CB), common emitter(CE), common collector(CC), comparison of three configurations, common emitter configuration as an amplifier, transistor biasing, dc load line, Q-point, Transistor as a switch, Introduction to JFET, characteristics of MOSFET, CMOS devices
Unit 3	Digital Fundamentals: Number systems and codes: Binary, Octal, Hexadecimal; BCD, Excess-3, Gray code, error detecting and correcting codes Alphanumeric code. Basic logic gates; NOT, AND, OR gates, Universal Logic gates: NAND, NOR gates; Ex-OR, Ex-NOR gates
Unit 4	Adder/Subtractor Circuits: binary addition and subtraction, one's and two's complement arithmetic, Half/Full Adder, Half/Full Subtractor, 4-bit Binary adder chip, BCD arithmetic, BCD Adder circuit
Unit 5	Combinational and Sequential Logic: Boolean algebraic theorms, minimization using algebraic manipulations, k-maps upto 4-variables, realization of combinational logic circuits, Flip-flops: S-R, J-K, J-K master-Slave, T & D Flipflop, sequential logic circuit as an Asynchronous counter.

Text and Reference Books

- Thomas L. Floyd, "Electronic Devices", Pearson Education, 9e,2011 R. G. Gupta, "Audio-Video Engineering", TMG,2e. R. S. Sedha, "A textbook of Applied Electronics", S. Chand Publication.2e. David A Bell, Electronic Devices And Circuits, Oxford University Press 3.
- Albert Paul Malvino, Electronic Principles, Tata McGraw-Hill 5.
- R. P. Jain, Modern Digital Electronics, McGraw-Hill, 4e.

Mapping of Course outcome with Program Outcomesand Program Specific Outcomes

Course	PO	РО	РО	PO	PO	PO	РО	PO	РО	PO	РО	РО	PS	PS	PS
outcom	1	2	3	4	5	6	7	8	9	10	11	12	O 1	O 2	O 3
e															
CO1	2	1	2												
CO2	2	1	2												
CO3	1	2													
CO4	1	2													
CO5		2	2												
CO6		2	2												

1 - Low2 - Medium 3 - High

Assessment:

ISE1 shall be either a written examination or a quiz or an assignment presentations as declared by the course coordinator

ISE2 shall be Class Test

ISE3 shall be based on one of the following or a combination of a few of the following as declared by the course coordinator :

- 1) Software Simulation
- 2) Application development
- 3) Power point presentation of case studies
- 4) Question & answer / Numerical solution
- 5) Mini projects

ESE shall be a written examination based on the complete syllabus

Assessment Pattern:

Assessment	Knowledge	ISE I	ISE II	ISE III	End Semester
Pattern	Level				Examination
Level No.					
K1	Remember	07	08	03	15
K2	Understand	04	04	03	30
K3	Apply	04	03	04	15
K4	Analyze	00	00	00	00
K5	Evaluate	00	00	00	00
K6	Create	00	00	00	00
Total Marks 1	Total Marks 100		15	10	60

Assessment table:

Assessment Tool	K1	K2	K2	K1	К3	K2
	CO1	CO2	CO3	CO4	CO5	CO6
ISE I (15 Marks)	06	04	05	00	00	00
ISE II (15 Marks)	00	00	00	04	07	04
ISE III (10 Marks)	03	00	00	03	02	02
ESE Assessment (60 Marks)	08	08	09	15	12	08

ead of the Computer Science and Engineering Department

Dean Academics

Approved in XXVIth Academic Counc

Total Marks 100 17 12 14 22 21 14

INAEC1001-COMMUNICATION SKILLS									
Teaching Scheme Examination Scheme									
Lectures: 02 hrs/ week	ISE I	10 Marks							
Credits: 2	ISE II	10 Marks							
	End Semester Examination 30 Marks								

Course description:

Communication Skills (INHS1001) is a one semester compulsory course for the first year students of all disciplines of the institute.

The course is aimed at introducing the basic of the communication skills. The goal of the course is to improve listening, speaking, reading and writing skills .Thus the stress in the syllabus in primarily on the development of communicative skills and fostering of ideas.

Course Outcomes:

After completing the course, students will be able to:

	completing the course, students will be use to.
	Course
	Outcomes
CO1	Analyze the situation and overcome the barriers in speaking English and get
	theability to communicate in professional as well as day to day life.
CO2	Develop personality through corporate etiquettes and take active participation in
	discussion and other academic activities as well.
CO3	Apply proper words and structure in speaking English language and develop
	vocabulary and use of correct English.
CO4	Express them through oral as well as written communication and develop written
	communication for professional and business purpose.
CO5	Use of E-Communication in day to day as well as professional life

Head of the Computer Science and Engineering Department

Dean Academics

Detailed Syllabus:

Unit 1	Communication Skills & Soft Skills
	Basic Concept, Factor ¹ s, Process and Types of Communication, Principles of
	EffectiveCommunication, Barriers of Communication. And how to overcome these
	barriers.
	Basic of Soft skills.
Unit 2	Nonverbal Communication and Corporate Etiquettes
	Body Language and its different aspects, Voice Dynamics & Voice Modulation,
	Professional Appearance, Clothing Etiquettes and Corporate Dressing.
Unit 3	Remedial Grammar And Vocabulary Building
	5h
	rsParts of Speech, Types of Tense, Use of Articles, Synonyms and Antonyms,
	Find out the Grammatical Errors in the given sentences.
Unit 4	Writing Skills And Business Correspondence
	Letter Writing, Office documents like Circulars, Notices, Minutes, Agenda And
	Memos
	Report Writings-Technical report, Academic report, Accident report. Resume
	Writing
Unit 5	E-Communication
	Introduction to Multi-cultural, Global Cultural traits, Email Communication and
	EmailEtiquettes

Text and Reference Books

- 1. S.M.Rai and Urmila Rai, *Business Communication*, 1st ed, New York, USA, New royal bookCompany Publication, 2010
- 2. Leena Sen, *Communication skills*, 2nd Revised ed, Publisher-PHI Learning, 2007
- 3. William Sanborn, *Technical communication*, Delhi, Pearson publications ,2014
- 4. McGraw Hills brief case books, *Presentation Skills for Managers*, United states, John A.Hill,1888
- 5. Pravil S.R. Bhatia and S.Bhatia, *Professional Communication Skill*, 8th Revised ed, SChand Publications, 2001
- 6. Daniel G. Riordan and Steven E. Pauley, *Technical Report Writing Today*,10th ed, USA,Michael Rosenberg Publisher
- 7. B. N. Basu 22 of 25, *Technical Writing*, 1st ed, New Delhi, Prentice hall of India,2008
- 8. M. A Pink and S. E. Thomas., *English Grammar Composition & Effective Business Communication*, 12th ed, S Chand Publication, 1998
- 9. Sarah Freeman, *Written Communication in English*, 1st ed, Orient Blackswan publication,1996

Head of the Computer Science and Engineering Department Dean Academic

Mapping of course outcome with Program outcomes and program specific outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO 1						1				3		
CO 2						1				3		
CO 3						1				3		
CO 4									3	3		
CO 5					3					3		1

1-Low, 2-Medium, 3-High

CSPCC1004: Computer Organization							
Teaching Scheme	Examination Scheme	,					
Lectures:02Hrs/Week	ISE I	10 Marks					
Credits:02	ISE II	10 Marks					
	End Semester Exam	30 Marks					

Course Objectives: The course will discuss the basic concepts of computer architecture and organization that can help the students to understand working of computer system. It provides architectural framework and foundation needed to understand future trends in computer design.

Course Outcomes: Students will be able to:

	Course Outcomes
CO1	Discuss various trends in computer design and architecture of advanced processors
CO2	Describe the operation of computer system for Data processing, Data Storage , Data Movement and control
CO3	Summarise internal structure of a computer along with concepts related to design of modern processors, ALU, control unit, memories and I/Os
CO4	Aware issues related to control unit operations, memory organization and I/O

lead of the Computer Science and Engineering Department

Dean Academics

pproved in XXVIth Academic Counc

Detailed Syllabus:

UNIT 1	Basic Concepts: Organization and Architecture, Structure and Function, , The Evolution of the Intel x86 Architecture, Embedded Systems, Cloud Computing Ahmdahl's Law and Little's Law, Basic Measures of Computer Performance Computer Functions, Interconnection and Memory: Computer Components, Computer Function, Interconnection Structures, Bus Interconnection, Principles of Cache Memory
UNIT 2	Internal Memory: Semiconductor Main Memory, DDR DRAM, Flash Memory, Newer Non-volatile Solid-State Memory Technologies, External Memory: Magnetic Disk, RAID, Solid State Drives, Optical Memory Input / Output: External Devices I/O Modules, Programmed I/O, Interrupt-Driven I/O, Direct Memory Access, Direct Cache Access, I/O Channels and Processors
UNIT 3	Arithmetic and Logic: Computer Arithmetic, Integer Representation, Integer Arithmetic, Floating- Point Representation, Floating-Point Arithmetic, Boolean Algebra, Gates Central Processing Unit: Instruction Sets: Characteristics and Functions Machine Instruction Characteristics, Types of Operands, Types of Operations, Addressing Modes, Processor Organization Parallel Processing: Multiple Processor Organizations, Multicore Computers, Multicore Organization, Intel Core i7-990X, Graphic Processing Units: Cuda Basics, GPU versus CPU

Text and Reference Books

1. William Stallings, Computer Organization and Architecture: Designing for Performance, Pearson Education, 10th Edition

Reference Books:

- 1.David A. Patterson and John L. Hennessy, Computer Organization and Design: The Hardware/Software Interface, Elsevier.
- 2. Carl Hamachar, ZvoncoVranesic and SafwatZaky, Computer Organization, McGraw Hill.
- 3. John P. Hayes, Computer Architecture and Organization, McGraw Hill.
- 4. Vincent P. Heuring and Harry F. Jordan, Computer Systems Design and Architecture, Pearson Education.

Reference websites:

- 1. http://nptel.ac.in/courses/106103068/
- 2. https://archive.nptel.ac.in/courses/106/105/106105163/
- 3. https://www.tutorialspoint.com/computer_organization/index.asp
- 4. http://www.cse.iitm.ac.in/~vplab/courses/comp_org.htm

Head of the Computer Science and Engineering Department

Dean Academic

pproved in XXVIth Academic Coun

Mapping of Course outcomes with Program Outcomes and Program Specific Outcomes:

Course		Program Outcomes									PSO's				
outcom e	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PS O 2	PS O 3
CO1	1											1	3		
CO2		2													
CO3			1										2		
CO4			1										1		

$3-High \quad 2-Medium \quad 1-Low$

Assessment:

ISE I:Class Test-I of Maximum Marks-10

ISE II:Class Test-II of Maximum Marks-10

ESE: End Semester Examination of Maximum Marks-30

Assessment Pattern:

Assessment Pattern Level No.	Knowledge Level	S		End Semester Examination
	D 1	05	00	10
K1	Remember	05	00	10
K2	Understand	05	05	15
K3	Apply	00	05	05
K4	Analyze	00	00	00
K5	Evaluate	00	00	00
K6	Create	00	00	00
Total Marks 5	50	10	10	30

Assessment table:

Assessment Tool	K2	К3
	CO1, CO2,CO3,	CO4
ISE I (10 Marks)	10	0
ISE II (10 Marks)	10	0
ESE Assessment (30 Marks)	15	15
Total Marks 50		

Special Instructions if any: Nil

Designed by: Anjana N Ghule

Head of the Computer Science and Engineering Department

Dean Academic

proved in XXVIth Academic Council

PHBSC1003 : Lab Physics				
Teaching Scheme	Examination Scheme			
Practical:2Hrs/Week	ISEIII	25 Marks		
Credits:01				

Course Outcomes:

After completion of this course students will be able to:

	Course Outcomes	
CO1	Demonstrate basic laws of Physics with experimental process	
CO2	Conduct experiments to understand the relationship between variables in physical	
	problems	
CO3	Interpret experimental data to examine the physical laws	
CO4	Illustrate the relevance between theoretical knowledge and means to imply it in	
	a practical manner by performing various experiments	
CO5	Work in teams and understand the effective team dynamics.	

List of the Experiments

The student shall perform minimum eight experiments of the following:

S.N.	Title of the Experiments	Skill /	CO
		Knowledge	
		Level	
1	e/m by Thomson's method.	S1/K2	CO3
2	Determination of radius of curvature of Plano-convex lens	S1/K1	CO1
	by Newton's ring.		
3	Determination of the wavelength of light of a given source	S1/K2	CO1
	using diffraction grating.		
4	Resolving power of telescope.	S1/K2	CO3
5	Study of C.R.O (amplitude and frequency measurement).	S1/K1	CO5
6	Specific rotation of sugar solution by Laurent's half shade	S1/K2	CO4
	polarimeter.		
7	Determination of band gap of a semiconductor.	S1/K2	CO3
8	To study temperature dependence of resistivity of a	S1/K2	CO3
	semiconductor using four probe method.		CO5
9	To determine the Hall coefficient of a semiconductor	S1,S3/K2	CO1
	material and then evaluate carrier type and its density of		
	charge carrier.		
10	Study of solar cell characteristics.	S1/K1	CO2

			CO5
11	Determination of wavelength of Laser using grating.	S1,S2/K2	CO3
12	Determination of numerical aperture of an optical fiber.	S1,S3/K2	CO3
13	To plot the hysteresis loop of a given magnetic material (iron).	S1/K2	CO2
14	To study characteristics of photovoltaic cell.	S1/K2	CO3
15	Study of divergence of Laser beam.	S2,S3/K2	CO2 CO5
16	To measure thickness of fine wire and grating element with the help of Laser source.	S1/K2	CO1
17	To draw V/I characteristics of forward & reverse biased P-N junction diode.	S1,S3/K2	CO3
18	Determination of velocity of sound through water using ultrasonic interferometer.	S1,S3/K2	CO3

Assessment: ISE I-Continuous Assessment of individual student in a batch during each experiment Maximum Marks-25

Assessment Pattern:

Assessment	Knowledge	ISE I
Pattern	Level	
Level No.		
K1	Remember	10
K2	Understand	15
K3	Apply	
K4	Analyze	
K5	Evaluate	
K6	Create	
Total Marks		25

Assessment	Knowledge	ISE I
Pattern	Level	
Level No.		
S1	Imitation	15
S2	Manipulation	05
S3	Precision	05
Total Marks		25

ead of the Computer Science and Engineering Department

Dean Academic

Approved in XXVIth Academic Council Dated: 27th April 2023

Mapping of Course outcome with Program Outcomes and Program Specific **Outcomes**

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Outcomes												
CO1	3			2					3			
CO2	3			2								
CO3	3	3	2	2								
CO4	3	3	2	2								
CO5									2			

¹⁻Low, 2-Medium, 3-High

MEESC1007: Lab Basics of Mechanical Engineering			
(For CSE/IT)			
TeachingScheme Examination Scheme			
Practical:02Hrs /Week	ISEIII	25Marks	
Credit:01			

Course Description: After completing this course student will have a fundamental understanding of the thermodynamics, thermal machine source of energy, power transmission elements, identify manufacturing process and machines

Course Outcomes:

After completing the course students will able to

Course	Course Outcomes		
CO1	CO1 Understand the operation of water tube boiler		
CO2	Understand the operation of IC engine		
CO3	Understand the operation of Refrigerator		
CO4	Understand the operation of Brakes and clutch		
CO5	Understand the manufacturing operation of lathe machine and welding process		

List of the Experiments:

Sr.	Title of the Experiments
No.	
1	Study and Demonstration of Boiler, Mountings and Accessories.

2	Study and Demonstration of Lancashire/Cochran boiler
3	Study and Demonstration of Babcock and Wilcox Boiler
4	Study and Demonstration of two stroke petrol and Diesel Engine
5	Study and Demonstration of Four stroke petrol and Diesel Engine
6	Study of Domestic Refrigerator
7	Study of Power Transmission Devices
8	Performing simple welded joint

Mapping of Course outcomes with Program outcomes:

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Outcomes												
CO1	1											
CO2	1	1				1						
CO3	1	1				1						
CO4	1					1						
CO5	1											
CO6	1											

MEESC1005 : Engineering Graphics Skills						
TeachingScheme Examination Scheme						
Practical:02Hrs /Week	ISEIII	25Marks				
Credit:01						

Course Outcomes:

After completing the course students will able to

Course	Course Outcomes					
CO1	CO1 Understand the conventions and the methods of engineering drawing					
CO2	Improve their visualization skills so that they can apply these skills in developing					
	new Products.					
CO3	Become proficient in drawing the projections of various machine components.					

List of the Experiments:

The student shall perform following experiments:

Sr.	Title of the Experiments
No.	
1	Introduction to Computer Graphics (CAD) Demonstrating of the theory of CAD software, Standard
	Toolbars and Basic operations used like, Object Properties, Draw, Modify and Dimension, Select
	and erase objects etc. in CAD software package
2	Drawing two problems based on projections of lines on drawing sheet

3	Drawing two problems based on projections of planes on drawing sheet						
4	Drawing two problems based on sectional orthographic projections on drawing sheet and 2						
	problems using CAD software tool.						
5	Drawing two problems based on sectional Isometric projections on drawing sheet and 2 problems						
	using CAD software tool.						

AssessmentPattern:

Assessment Pattern LevelNo.	KnowledgeLe vel	ISEIII	ESE
S1	Imitation	5	
S2	Manipulation	10	
S3	Precision	10	
S4	Articulation		
S5	Naturalization		
S6			
TotalMarks2	25	25	

Assessmenttable:

AssessmentTool	S1 to S3	S1, S2	S1
	CO1	CO2	CO3
ISEIII TW	10	10	5
(50 Marks)			
TotalMarks50	10	10	5

Mapping of Course outcomes with Program outcomes:

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Outcomes												
CO1	1	2										
CO2			3							1		
CO3	1			2								

1 - Low, 2 - Medium, 3 - High

Head of the Computer Science and Engineering Department

Dean Academics

Approved in XXVIth Academic Council Dated: 27th April 2023

ETESC1004: Lab Basics of Electronics Engineering					
Teaching Scheme Examination Scheme					
Practical: 2Hrs/Week	ISE III*	25 Marks			
Credits:01	End Semester Evaluation				

Course Outcomes:

After completion of this course students will be able to:

	Course Outcomes
CO1	Explain the characteristics plot of diode and its application as a rectifier/regulator
CO2	Explain the characteristics plot of transistor and its application as amplifier
CO3	Interpret the operation and working of various gates as a combinational logic
CO4	Interpret the operation and working of various flipflops as a sequential logic

List of the Experiments

The student shall perform following experiments

Sr.	Title of the Experiments	Skill /	CO	Marks for
No.		Knowledge		ISE
		Level		
1	Plot the input/output characteristics of P-N Junction diode	K2,S2	CO1	25
2	Observe the diode circuit as a half wave and full-wave rectifier	K2,S2	CO1	25
3	Observe the zener diode circuit as voltage regulator	K2,S2	CO1	25
4	Plot the input/output characteristics of N-P-N transistor in CB configuration	K2,S2	CO2	25
5	Study of common emitter transistor as an amplifier	K2,S2	CO2	25
6	Verify the operation of basic and universal logic gates	K2,S2	CO3	25
7	Realize the half/full adder/subtractor circuit using gates	K2,S2	CO3	25
8	Realize the 4-bit binary adder using integrated circuit	K2,S2	CO3	25
9	Realize the given Boolean algebraic expression using gates	K2,S3	CO3	25
10	Realize the following combinational logic circuits: i) Prime number detection ii) Binary number divisible by 03/divisible by 04	K2,S3	CO3	25
11	Study of Flipflops : S-R, J-K, T, D-Flipflop	K2,S3	CO4	25
12	Realize the asynchronous counter circuit using J-K Flipflop	K2,S3	CO4	25

Assessment:

*ISE III will be evaluation of performance of students during the lab hours, based on timely completion of journals and given tasks, punctuality, attendance, clarity of aim and grasp of the experiment performed. ISE III marks will be allotted at the end of the semester. Marks will be the average of the marks obtained in performing experiments till end of the semester.

Assessment Pattern:

Assessment Pattern Level No.	Knowledge Level	ISEIII	End Semester Examination
S1	Imitation	05	
S2	Manipulation	05	
S3	Precision	05	
S4	Articulation	00	
S5	Naturalizatio	00	
	n		
Total Marks		25	

Mapping of Course outcome with Program Outcomes and Program Specific Outcomes

Course	P	РО	PO	РО	РО	PO	PO	РО	PO	РО	PO	РО	PSO	PSO	PS
outcom	O	2	3	4	5	6	7	8	9	10	11	12	1	2	O 3
e	1														
CO1				1	3										
CO2		1													
CO3		1	2												
CO4				1	2										

3 – High 2 – Medium 1 - Low

Head of the Computer Science and Engineering Department

Approved in XXVIth Academic Council

Dean Academic

ETVSE1002: Engineering Exploration							
Teaching Scheme Examination Scheme							
04Hrs/Week	ISE II:25 Marks						
Total Credits:2	ISE III: 25 Marks						
Contact Hours 40	IDE III. IS WILLIAM						

Course Outcomes

As an outcome of completing the course, students will be able to:

CO1	Explain the role of an Engineer as a problem solver
CO2	Identify multi-disciplinary approach required in solving an engineering problem
CO3	Build simple mechanisms using engineering design process
CO4	Interface different peripherals to Arduino
CO5	Apply basics of engineering project management skills
CO6	Analyze engineering solutions from ethical & sustainability perspectives

Engineering Exploration is a Project-based learning (PBL) based course wherein students will apply their technical knowledge, practical skills to develop a project in a team. A group of 5 students (max) normally will be permitted in a team. A set of need statements will be prepared by team members with the help of course coordinators. These need statements will be converted to Problem Statements. Students will follow Engineering Design process to develop conceptual design and detailed design.

Few of the activities which can be carried out are:

- Catapult design, weight bearing structure using newspapers, bridge making, activity with straws, colored paper, box of straws, football with papers, paper plane.
- How do you think Engineering design case studies for designing Panipuri/ tea/ coffee vending/pan making vending machines, grass cutter/mower machine, winding machines, chips making machine, home automation etc (block diagram and components in different blocks), Pugh chart examples.
- Building mechanisms using gears and other components, design mechanisms using linkages, auto inventor for model designing.
- Arduino based experimentation and programming.
- Preparation of timelines for project management.
- Presentation of case studies for ethics, sustainability, and carbon footprint.

Head of the Computer Science and Engineering Department

Dean Academics

pproved in XXVIth Academic Cour Dated: 27th April 2023

Detailed Syllabus:

	Content
Module 1	Introduction to Engineering and Engineering Study: Difference between science and engineering, scientist and engineer needs and wants, various disciplines of engineering, some misconceptions of engineering, Expectation for the 21st century engineer and Graduate Attributes.
Module 2	Engineering Design Process, Multidisciplinary facet of design, Pair wise comparison chart, Introduction to mechatronics system, generation of multiple solution, Pugh Chart, Motor and battery sizing concepts, introduction to PCB design
Module 3	Mechanisms 4 Hrs Basic Components of a Mechanism, Degrees of Freedom or Mobility of a Mechanism, 4 Bar Chain, Crank Rocker Mechanism, Slider Crank Mechanism.
Module 4	Platform Based Development Introduction to various platform-based development (Arduino) programming and its essentials, Introduction to sensors, transducers and actuators and its interfacing with Arduino, Introduction to Data Acquisition and Analysis
Module 5	Project Management Introduction to Agile practices, Significance of teamwork, Project management tools: Checklist, Timeline, Gantt Chart, Significance of documentation
Module 6	Sustainability and Ethics in Engineering Introduction to sustainability, Sustainability leadership, carbon footprint Identifying Engineering as a Profession, Significance of Professional Ethics, Code of Conduct for Engineers, Identifying Ethical Dilemmas in different tasks of engineering, Plagiarism check for research papers
Total Cont	tact Hours 40 Hrs
Course Pro	oject Reviews Evaluation of group projects 08 Hrs

Mapping of Course outcome with Program Outcomes and Program Specific Outcomes

Course	P	PO	PO	РО	PO	PO	PO	PO	PO	PO1	PO	PO	PSO	PSO	PSO
Outcome	О	2	3	4	5	6	7	8	9	0	11	12	1	2	3
	1														
CO1	2	1				1					1	1			
CO2	2	2	2	1	1				3	1					
CO3	2	2	3	2	2	1	1		3	1	2		1	1	
CO4	2	2	2	2	2				1	1	2	1	3	1	1
CO5		2	2	2	2	1	1	1	3	1	3		1	1	1
CO6						1	3	3							

3 – High 2 – Medium 1 – Low

Evaluation Scheme									
Name of the Module	Hours	Marks	Evaluation						
1.Introduction to Engineering & Engineering Study	02	3							
2. Engineering Design	15	10	ISE - II						
3. Mechanisms	04	2							
4. Platform based development	12	10							
5. Project Management	03	5							
6. Sustainability and ethics in Engineering	04	5	IOE III						
7. Course Project Reviews	08	10	ISE - III						
8.Honor code		5							
TOTAL	48	50							

	CO1	CO2	CO3	CO4	CO5	CO6	Total
ISE II	03	10	02	10			25
ISE III		05		05	05	10	25

Head of the Computer Science and Engineering Department Dean Academics Approved in XXVIth Academic Council Dated: 27th April 2023

INCCC1002: NSS/ INCCC1003: Sports/INCCC1004: Club Activities (Liberal Learning Course)							
Teaching Scheme	04 hrs./ week						
Tutorial: 00 hrs./ week							
Credits: 02	ISE-III 50 Marks						

Course Description: Co-curricular activities are activities that take place outside of a course's curriculum but are related to academics in some way. Although involvement is not part of classroom instruction, it does supplement and enhance a student's academic experience.

NSS: Aim of NSS activities to Gain skills in mobilizing community participation; To acquire leadership qualities and democratic attitude; To develop the capacity to meet emergencies and national disasters; To practice national integration and social harmony. Types of Activities are not limited to Cleaning, Plantation

Blood Donation Camps, Awareness Rallies, Health Care Camps, Stage shows or a procession creating awareness of such issues as social problems, education and cleanliness but decided by Institute NSS Coordinator. Students will participate in NSS Activities throughout semester.

The evaluation is based on participation in regular NSS activities. NSS Coordinator along with departmental NSS coordinator will certify at the end of semester about participation. Program head will notify the exam section about awarding credits to the students.

Sports activity: Sporting Activities means performing or participating in the Sport in any capacity which includes, but is not limited to, participation in training, competitions, coaching or as an official.

Students will participate in Sports Activities throughout semester. Gymkhana vice president will coordinate along with sports coordinator of department. The coordinators will certify at the end of semester about participation. Program head will notify the examination section about awarding credits to the students. The evaluation is based on participation in regular sports activities.

Club activities: Government Engineering College Aurangabad has various clubs that focus on specific interests such as robotics, coding, literature, environment, etc. These clubs often organize events, workshops, and competitions that provide students with opportunities to learn new skills and showcase their talents. Students will participate in Club Activities throughout semester. Faculty coordinators will coordinate along with students bodies the activities of club.

The Faculty coordinators will certify at the end of semester about participation of students. Program head will notify the examination section about awarding credits to the students. Dean Students affairs and all program heads will formulate additional modalities for smooth conduction of co curricular activities as and when required.

Head of the Computer Science and Engineering Department Dean Academics

Approved in XXVIth Academic Council Dated: 27th April 2023