GOVERNMENT COLLEGE OF ENGINEERING, CHHATRAPATI SAMBHAJINAGAR

(An Autonomous Institute of Govt. of Maharashtra) Railway Station Road, Osmanpura, Chhatrapati Sambhajinagar Phone – (0240) 2366101, 2366111, Fax (0240) 2332835

Curriculum for M. Tech. in Computer Science & Engineering (NEP Compliant)

(With Effect from Academic Year 2023-24)

Vision of the Institute

• In pursuit of global competitiveness, the institute is committed to excel in engineering education and research with concern for environment and society.

Mission of the Institute

- Provide conducive environment for academic excellence in engineering education.
- Enhance research and development along with promotion to sponsored projects and industrial consultancy.
- Foster development of students by creating awareness for needs of society, sustainable development and human values.

Vision of Computer Science and Engineering department:

To develop cultured and technically competent computer professionals and scholars with sustained growth in employability, high impact research outcome and become genuine asset to industry and society

Mission Computer Science and Engineering department:

The mission of the Department of Computer Science and Engineering is to develop undergraduate and postgraduate students having professional accomplishment through-

- 1. Developing Creativity and Logical Reasoning amongst the learner
- 2. Updating curricula according to industry requirements and standards
- 3. Promote leadership quality, social accountability and ethics in disciplined environment, quality Education.
- 4. Creating environment conducive to research

Program Educational Objective(s)

After postgraduation, the Computer Science & Engineering postgraduates would be able to

PEO 1: Technical Expertise: Implement fundamental domain knowledge of core courses for developing effective computing solutions by incorporating creativity and logical reasoning.

PEO 2: Successful Career: Deliver professional services with updated technologies in computer science based career.

PEO 3: Soft Skills: Develop leadership skills and incorporate ethics, team work with effective communication & time management in the profession.

PEO 4: Life Long Learning: Conduct research among computing professionals as per market needs.

PO1: An ability to independently carry out research investigation and development work to solve practical problems.

PO2: An ability to write and present a substantial technical report/document.

PO3: Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor program.

PO4: Design components or processes to solve complex engineering problems by conducting Experiments.

PO5: Utilize the techniques, skills and modern computer Engineering tools, Software and techniques necessary for Engineering practice.

GENERAL COURSE STRUCTURE & THEME

A. Definition of Credit:

1 Hr. Lecture (L) per week	1 Credit
1 Hr. Tutorial (T) per week	1 Credit
1 Hr. Practical (P) per week	0.5 Credit
2 Hours Practical (P) per week	1 Credit

B. Range of Credits: M.Tech.in Computer Science & Engineering :The total number of credits proposed for the two-year full time M.Tech. in Computer Science & Engineering is kept as 82.

C. Semester wise Credit Distribution Structure for Two-Year Full-Time PG Program in Computer Science & Engineering :

Semester		Ι	II	III	IV	Total	
	1	08	12			Credits	
Programme Core Course (PCC)	Programme Core Course (PCC) Program Courses				-	20	
Programme Elective Course (PEC)		08	06	-	-	14	
Open Elective (OE) Other than a	Multidisciplinary		03	03		06	
particular program	Courses	-	03	03	-	00	
Vocational and Skill	Skill Courses	02	02			04	
Enhancement Course (VSEC)		02		-	-	04	
Ability Enhancement Course (AEC)	Humanities	-	03	-	-	03	
Entrepreneurship/Economics/	Social Science and			03		03	
Management Courses	Management	-	-	03	-	03	
Indian Knowledge system (IKS)	(HSSM)			02		02	
Research Methodology	Experiential	04	-	-	-	04	
Project	Learning			10	16	26	
	Courses	-	-	10	10	20	
Co-curricular Courses (CC)	Liberal Learning					Andit	
	Courses	-	-	-	-	Audit	
Total Credits (Major)		22	26	18	16	82	

D. Category-wise Courses

1. VOCATIONAL AND SKILL ENHANCEMENT COURSE (VSEC)

S.	('stagary ('aursa'l'itla		Semester	H	ours per w	eek	Total
No	Category	Course Thie	Semester	Lecture	Tutorial	Practical	Credits
1	VSEC	Mini Project – I	Ι	0	0	4	02
2	VSEC	Mini Project – II	II	0	0	4	02
	Total Credits						

RAN Approved in XXV IIIth Academic Council Dated: 25th Jun 2024

2. HUMANITIES & SOCIAL SCIENCES COURSES [HSSM]

S.	Cotogomy	Course Title	Semester	Η	ours per w	veek	Total
No	Category		Semester	Lecture	Tutorial	Practical	Credits
1	Ability Enhancement Course (AEC)	Technical Communication	II	3	0	0	03
2	Entrepreneurship/Economics/ Management Courses	Economics/ Management Courses	III	3	0	0	03
		Total Credi	ts				06

3. EXPERIENTIAL LEARNING COURSES (ELC)

S.	Category	Course Title	Semester	He	ours per w	eek	Total		
No	Category	Course The	Semester	Lecture	Tutorial	Practical	Credits		
1	Research Methodology	Research Methodology	Ι	4	0	0	04		
2	Project	Dissertation - I	III	0	0	20	10		
3	Project	Dissertation - II	IV	0	0	32	16		
		Total Credits							

4. LIBERAL LEARNING COURSES (CO-CURRICULAR COURSES (CC))

S.				Ho	ours per we	ek	Total
No	Category	Course Title	Semester	Lecture	Tutorial	Practica l	Credits
1	CC	Yoga/Clubs	Ι	0 0		2	Audit
	Total Credits						

5. OPEN ELECTIVE (OE) OTHER THAN A PARTICULAR PROGRAM

Two courses of 3 credits

Following courses are offered as Open Electives (OE) by Computer Science & Engineering Department

s.	Category	Course Title	Semester -	Ho	Total Credits				
No	Category	Course Thie		Lecture	Tutorial	Practic al			
1	OE	Professional Ethics and Cyber Law	II	3	0	0	03		
2	OE	Data Science	III	3	0	0	03		
	Total Credits								

22 Bhi Approved in XXV IIIth Academic Council Dated: 25th Jun 2024

Government College of Engineering, Aurangabad (An Autonomous Institute of Government of Maharashtra)

Teaching and Evaluation Scheme from Academic Year 2023-24 as per NEP - 2020 M. Tech. Program in Computer Science & Engineering

Sr.	Categ	Cours	Course Title		achi	0	its				aluation
No	ory	e			Scheme		Credits				Marks
		Code		L	Т	Р	Ċ	ISE	ISE	ES	Total
								Ι	Π	Ε	
1.	PCC	CSPC C5001	Advanced Data Structures	4	0	0	4	20	20	60	100
2.	PCC	CSPC C5002	Advanced Machine Learning	3	0	0	3	20	20	60	100
3.	PCC	CSPC C5003	Lab- Advanced Machine Learning	0	0	2	1	-	25	_	25
4.	PEC	CSPE C5001 -3	Programme Elective Course - I	4	0	0	4	20	20	60	100
5.	PEC	CSPE C5004 -6	Programme Elective Course - II	4	0	0	4	20	20	60	100
6.	VSEC	CSVS E5001	Mini Project – I	0	0	4	2	-	25	25	50
7.	ELC	MER MC50 01	Research Methodology	4	0	0	4	20	20	60	100
8.	CC	INCC C5001	Yoga/Club	-	-	2	-	-	_	-	-
Tota	al			19	0	08	22	100	150	325	575
Prog	gramme	Elective (Course – I	Pro	grai	mme	Elec	tive C	ourse	e – II	
1. C	SPEC500	1 Advanc	ed Cloud Computing	1. C	SPE	EC50	04 In	tellige	nt Sys	stems	
2. C	SPEC500	2 Advanc	ced Computer Network	2.0	CSPE	EC50	05 Di	istribu	ted Co	omputi	ng
		3 Soft Co	1	2. CSPEC5005 Distributed Computing Systems							
				3.0	SPE	EC50	06 Int	ternet	of Thi	ings w	ith
						ry Pi					

Semester – I

Audit Course

Semester	_	II
----------	---	----

Sr. No	Categ ory	Course Code	Course Title		achi chen	0	Credits			Evalua of Mark	
				L	Τ	Р	Cre	ISE I	ISE II	ESE	Total
1.	PCC	CSPCC 5004	Advanced Data Mining	4	0	0	4	20	20	60	100
2.	PCC	CSPCC 5005	Recommender Systems	4	0	0	4	20	20	60	100
3.	PCC	CSPC C5006	Computer Vision	3	0	0	3	20	20	60	100
4.	PCC	CSPC C5007	Lab- Computer Vision	0	0	2	1	-	25	-	25
5.	PEC	CSPEC 5007-9	Programme Elective Course - III	3	0	0	3	20	20	60	100
6.	PEC	CSPEC 5010- 12	Programme Elective Course - IV	3	0	0	3	20	20	60	100
8.	OE	CSOE C5002	Open Elective – I*	3	0	0	3	20	20	60	100
9.	VSEC	CSVS E5002	Mini Project – II	0	0	4	2	-	25	25	50
10.	AEC	EEAE C5001	Technical Communication	3	0	0	3	20	20	60	100
Tota	ıl			23	0	6	26	140	190	445	775
Programme Elective Course – III 1. CSPEC5007 Speech and Natural Language Processing 2. CSPEC5008 Cryptography &Information Security 3. CSPEC5009 Biometrics Open Elective – I*			Programme Elective Course – IV 1. CSPEC5010 Big Data Analytics 2. CSPEC5011 High Performance Computing 3. CSPEC5012Wireless Sensor Network								
-	SOEC50		ional Ethics and Cyber								

* Equivalent online courses (NPTEL/SWAYAM/MOOC/COURSERA/OTHERS) will be approved by BoS Chairman

Sr. No.	Course code	Course offering Department	
1	AMOEC5001	Basics of Finite Element Analysis	Applied Mechanics
2	CSOEC5002	CSE	
3	CEOEC5003	Engineering Optimization	Civil
4	MEOEC5004	Robotics (Not for Mechanical PG Students)	Mechanical
5	EEOEC5005	Electric Vehicles (Not for Electrical PG Students)	Electrical
6	ECOEC5006	IOT for Smart Systems	E&TC

List of Open Electives I to be offered in PG Semester II (First Year)

Approved in XXV IIIth Academic Council Dated: 25th Jun 2024 BA

List of Humanities –I to be offered in PG Semester – II NEP Compliant Curriculum

Sr. No.	Course code	Humanities Course	Course offering Department
1	EEAEC5001	Technical Communication	Electrical

Semester – III

Sr. No	Categ ory	Cours e	Course Title		Teaching Scheme		Credits	Continuous Evaluat			
		Code		L	T	Р	Cre	ISE I	ISE II	ES E	Tota l
1.	OE	CSOE C6002	Open Elective – II*	3	0	0	3	20	20	60	100
2.	HSSM		Economics / Management Course	3	0	0	3	20	20	60	100
3	HSSM	ECIKS 6001	Vedic Approach to Mathematics	2	-	-	2	10	10	30	50
4.	ELC	CSDI S6001	Dissertation – I	0	0	20	10	-	100	100	200
Total		8	0	20	18	50	150	250	450		
Open Elective – II*											
1. C	1. CSOEC6002 Data Science										
HSS	SM Huma	nities –II									

List of Humanities -II to be offered in PG Semester - III NEP Compliant Curriculum

Sr. No.	Course code	Humanities Course	Course offering Department
1	MEEEM6001	Entrepreneurship Development	Mechanical
2	ECEEM6002	Engineering Economics	E&TC
3	MEEEM6003	Industrial Management	Mechanical

* Equivalent online courses (NPTEL/SWAYAM/MOOC/COURSERA/OTHERS) will be approved by BoS Chairman

List of Open Elective II to be offered in PG Semester III (second year)

Sr.	Course code	Open Elective Course	Course offering
No.			Department
1	AMOEC6001	Indian Constitution	Applied Mechanics
2	CSOEC6002	Data Science (Not for CSE PG Students)	CSE
3	CEOEC6003	Disaster Management	Civil
4	MEOEC6004	Additive Product Management	Mechanical
5	EEOEC6005	Smart Grid Systems	Electrical
6	ECOEC6006	Soft Computing	E&TC

Sr. No	Categ ory	Cours e	Course Title	Teaching Scheme		edits	Con		ıs Eva s of M	luation in arks	
		Code		L	Т	Р	Cre	ISE I	ISE II	ES E	Total
1.	ELC	CSDIS 6002	Dissertation – II/OJT	_	-	32	16	_	_	150	150
Tota	al			0	0	32	16	0	0	150	150

CSPCC5001	Advanced Data Structures	- 7	
Teaching Scheme	Examination Scheme	Vir	Bheil
		Approved in	n XXV IIIth Academic Council ated: 25 th Jun 2024

Lectures: 04 hrs./ week	ISE I	20 Marks
Credits:04	ISE II	20 Marks
	End Semester	60 Marks
	Examination	

Course Description : Data structures play a central role in modern computer science. In addition, data structures are essential building blocks in obtaining efficient algorithms. This course covers advanced data structures.

Course Outcomes

After successful completion the course, students will be able to:

CO1	Understand the implementation of symbol table using hashing techniques.
CO2	Develop and analyze algorithms for red-black trees, B-trees and Splay trees.
CO3	Develop algorithms for text processing applications.
CO4	Identify suitable data structures and develop algorithms for computational geometryproblems.
CO5	Understand the implementation of symbol table using hashing techniques.

Detailed Syllabus:

Unit 1	 Dictionaries: Definition, Dictionary Abstract Data Type, Implementation of Dictionaries. Hashing: Review of Hashing, Hash Function, Collision Resolution Techniques in Hashing, Separate Chaining, Open Addressing, Linear Probing, Quadratic Decking, Decking,
Unit 2	Probing, Double Hashing, Rehashing, Extendible Hashing. String algorithms : - Rabin karp algorithm, fing earch trees, fibonacii heap ers
Unit 3	Trees: Binary Search Trees, AVL Trees, Red Black Trees, 2-3 Trees, B-Trees, Splay Trees
Unit 4	Text Processing: Sting Operations, Brute-Force Pattern Matching, The Boyer- Moore Algorithm, The Knuth-Morris-Pratt Algorithm, Standard Tries, Compressed Tries, Suffix Tries, The Huffman Coding Algorithm, The Longest Common Subsequence Problem (LCS), Applying Dynamic Programming to the LCS Problem.
Unit 5	Computational Geometry: One Dimensional Range Searching, Two Dimensional Range Searching, Constructing a Priority Search Tree, Searching a Priority Search Tree, Priority Range Trees, Quadtrees, k-D Trees.

Text/References:

Approved in XXV IIIth Academic Council Dated: 25th Jun 2024 BAN

1. Suman Shah, Shailendra shukla Advance data structures Theory and Applications Ist edition Chapman and Hall ,2019.

- 2. Peter bras Advance Data structure, Cambridge University Press, revised Edition 2019
- 3. Mark Allen Weiss, Data Structures and Algorithm Analysis in C++, 2nd Edition, Pearson, 2004.
- 4. M T Goodrich, Roberto Tamassia, Algorithm Design, John Wiley, 2002.

3 - High 2 – Medium 1 – Low

	Program Outcomes							
Course outcome	PO1	PO2	PO3	PO4	PO5			
CO1	1	1	2	3	3			
CO2	1		2	3	3			
CO3	2	1	1	2	3			
CO4	3	1	1	2	3			
CO5	2	1	1	1	3			

Assessment:

ISE I : In semester evaluations 20 marks, each will be based on Class Test

ISE II: Teachers Assessment of 20 marks is based on one of the / or combination of few of the following:

- 1. Quiz
- 2. Assignments
- 3. Question and answer
- 4. PowerPoint presentation

Assessment Pattern:

Assessment Pattern Level No.	Knowledge Level	ISE I	ISE II	End Semester Examination
K1	Remember	10	05	10
K2	Understand	05	05	10
K3	Apply	05	05	10
K4	Analyze	00	02	10
K5	Evaluate	00	03	10
K6	Create	00	00	10
Total Marks 100		20	20	60

Assessment table:

Assessment Tool	K1, K2	K3,K4,K5,K6
	CO1,CO2,CO3	CO3, CO4,CO5
ISE I (20 Marks)	10	10
ISE II (20 Marks)	10	10
ESE Assessment (60 Marks)	20	40
Total Marks 100	40	60

CSPCC5002: Advanced Machine Learning

Teaching		Evaluation Scheme	
Scheme			
Lectures	3 Hrs/Week	ISE I	20 Marks
Tutorial	-	ISE II	20 Marks
Total Credits	3	ESE	60 Marks

Course Description: Machine learning is a branch of computer science that uses algorithms to imitate the way in which humans learn. It uses statistical methods to train algorithms and make predictions. Machine learning is one of the most in-demand Data Science skills, which allows data scientists to increase the accuracy of predictions of algorithms.

Course Outcomes:

After successful completion the course, students will be able to:

	Course Outcomes
CO1	Understand the characteristics of machine learning strategies
CO2	Apply various supervised learning methods to real life problems
CO3	Apply probabilistic and unsupervised learning models for handling unknown pattern
CO4	Identify and integrate more than one techniques to enhance the performance of learning
CO5	Illustrate reinforcement learning and the core principles behind it.

Detailed Syllabus:

Unit 1				
	Introduction, Examples of Various Learning Paradigms, Perspectives and			
	Issues, Version Spaces, Finite and Infinite Hypothesis Spaces.			
Unit 2	Classification and Regression Trees, Regression: Linear Regression, Multiple			
	Linear Regression, Logistic Regression, Support vector machines: Linear and			
	Non-Linear, Kernel Functions.			
Unit 3	Introduction to clustering, Hierarchical: AGNES, DIANA, Partitional: K-			
	means clustering, K-Mode Clustering, Expectation Maximization, Gaussian			
	Mixture Models, Probabilistic Learning Bayesian Learning, Bayes Optimal			
	Classifier, Naive Bayes Classifier			
	Generative Models (mixture models and latent factor models)			
Unit 4	Ensemble Learning Model Combination Schemes, Voting, Bagging: Random			
	Forest Trees, Boosting: Adaboost.			

Approved in XXV IIIth Academic Council Nated: 25th Jun 2024 BAN

Unit 5	Learning Theory, Introduction to Reinforcement Learning, Bandit algorithms -
	UCB, PAC Learning, VC Dimension

Text and Reference Books:

Ethem Alpaydin,"Introduction to Machine Learning", MIT Press, Prentice Hall of India, Third Edition.
 Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar "Foundations of Machine Learning", MIT Press,.

3. Charu C .Aggarwal,"Data Classification Algorithms and Applications", CRCPress,.

4. Charu C. Aggarwal, "DATA CLUSTERING Algorithms and Applications", CRC Press, 2014.

5. Kevin P. Murphy "Machine Learning: A Probabilistic Perspective", The MIT Press,

6. Jiawei Han and Micheline Kambers and Jian Pei, "DataMining Concepts andTechniques", 3rd edition, Morgan Kaufman Publications, .

Web Resources:

NPTEL course : Machine Learning :https://onlinecourses.nptel.ac.in/noc20_cs74/preview Reinforcement Learning :https://onlinecourses.nptel.ac.in/noc20_cs74/preview

Mapping of Course outcomes with Program Outcomes and Program Specific Outcomes:

	Program Outcomes				
Course outcome	PO1	PO2	PO3	PO4	PO5
CO1	3				
CO2	2	1	1	3	3
CO3	2	1	2	3	3
CO4	3	1			2
CO5	2	1	1	3	2

3 - High 2 – Medium 1 – Low

Assessment:

ISE I: In semester evaluations (ISE I) of 20 marks, each will be based on Class Test

ISE II: Teachers Assessment of 20 marks is based on one of the / or combination of few of the following:

- 1. Quiz
- 2. Assignments
- 3. Question and answer
- 4. PowerPoint presentation

Assessment Pattern Level No.	Knowledge Level	ISE I	ISE II	End Semester Examination
K1	Remember	05	00	12
K2	Understand	10	10	12
K3	Apply	05	10	12
K4	Analyze	00	00	12
K5	Evaluate	00	00	12
K6	Create	00	00	00
Total Marks 100			20	\an-

Assessment Pattern:

Assessment table:				
Assessment Tool	K1, K2	K3,K4,K5		
	CO1,CO2	CO3, CO4,CO5		
ISE I (20 Marks)	10	10		
ISE II (20 Marks)	10	10		
ESE Assessment (60 Marks)	24	36		
Total Marks 100	44	56		

Special Instructions if any: Nil

CSPCC5003: Lab Advanced Machine Learning

Teaching Scheme		Evaluation Scheme	
Practical	2Hrs/Week	ISE I	
Tutorial	-	ISE II(Term Work)	25 Marks
Total Credits	1	ESE	-

Course Outcomes:

After completion of this course students will be able to:

	Course Outcomes			
CO1	Learn to perform classification tasks using a python programming.			
CO2	Learn to perform clustering tasks using a python programming.			
CO3	Demonstrate the working of algorithms ensemble algorithms			
CO4	Exercise the RL techniques with varied input values for different parameters.			

List of the Experiments:

The student shall perform minimum ten experiments of the following using Python

Sr. No.	Title of the Experiments	Skill / Knowledge Level	СО	Marks for ISE
	Level: Basic (all)			
1	Implement Linear regression	S 1	CO1	02
2	Implement Logistic Regression	S2	CO2	02
3	3 Implement EM algorithm		CO2	02
4	4 Implement Naïve Bayes Classification		CO1	03
5	Implement Random forest Algorithm	S2	CO1	03
	Level: Moderate (all)			
6	Implement bagging algorithm	S2	CO3	02
7	Implement K means Clustering technique on Weather dataset	S2	CO2	02

Approved in XXV IIIth Academic Council Dated: 25th Jun 2024

8	Implement hierarchical clustering using python	S2	CO2	02
9 Implement boosting algorithm		S2	CO3	02
	Level: Complex (all)			
10	Implement reinforced learning to solve any problem .	S 3	CO4	03
11	Apply RL algorithm	S2	CO4	02

Assessment:

ISEII: In-Semester Evaluation of 25 marks based on performance of students in practical hours, practical assignments completed, and timely submission.

Assessment Table:

Assessment Tool	S 1	S2, S3
	CO1	CO2,C03, CO4
ISE II (25 Marks)	03	22

Assessment Pattern:

Assessment Pattern Level No.	Knowledge Level	End Semester Examination
S1	Imitation	03
S2	Manipulation	19
S3	Precision	03
S4	Articulation	00
S5	Naturalizatio n	00
Total I	25	

Mapping of Course outcomes with Program Outcomes and Program Specific Outcomes:

Course	1	Progra	ım Ou	tcome	S
outcome	PO 1	PO 2	PO 3	РО 4	РО 5
CO1	2	2	2	2	3
CO2	2	2	2	3	3
CO3	1	2	2	3	3
CO4	3	2	1	3	3

3 – High 2 – Medium 1- Low

CSPEC5001 : Advanced Cloud Computing

Approved in XXV IIIth Academic Council Dated: 25th Jun 2024 BAN

Teaching		Evaluation Scheme	
Scheme			
Lectures	4 Hrs/Week	ISE1	20 Marks
Tutorial		ISE II	20 Marks
Total Credits	4	ESE	60 Marks

Course description:

Developments in cloud computing technology are transforming the way we live and work. This course will equip students with specialist knowledge in this fast-growing field and allow to explore a range of advanced topics in cloud computing like: Exploring different cloud computing platforms, virtualization, VDC architecture, etc

Course Outcomes:

After successful completion the course, students will be able to:

	Course Outcomes
CO1	To install cloud computing environments.
CO2	To study a survey on cloud building blocks and technologies.
CO3	To perform cloud computing admin and programming using open source tools.
CO4	Identify real time cloud applications in different scenarios appropriate to society
CO5	To study Cloud security aspects

Detailed Syllabus:

Unit 1	Introduction, Roots of Cloud Computing: From mainframe to Cloud, Benefits of Cloud Computing SOA, Web services, Web 2.0, Mashups, Grid computing, Utility computing, Hardware virtualization, Essentials of Cloud characteristics, Challenges, Cloud economics, Role of Networks in Cloud Computing: Cloud types and service models, Cloud computing platforms : Openstack, Opennimbus, Eucalyptus Primary Cloud Service models, Cloud Services brokerage, Primary cloud deployment models, cloud computing reference model, The greenfield and brownfield deployment options
Unit 2	Introduction, Characteristics of Virutalized environments, Taxonomy of Virtualization techniques, Pros and Cons of Virtualization, Technology examples: Xen, KVM, Vmware, Microsoft Hyper-V Infrastructure as Service, best-of breed cloud infrastructure components, cloud ready converged infrastructure, Virtual machine provisioning and migration services, Anatomy of Cloud infrastructure, Distributed management of virtual infrastructure, scheduling techniques, SLA Commitment
Unit 3	Storage system architecture, Big data, Virtualize data centre(VDC) architecture, VDC Environment, server, storage, networking, desktop and application virtualization techniques and benefits, Virtual Machine Components and Process of converting physical to VMs, Block and file level storage virtualization, Virtual Provisioning, and automated storage tiering, VLAN, VSAN and benifits, Network traffic management techniques in VDC, Cloud file systems: GFS and HDFS, BigTable, HBase and Dynamo. Features and comparisons among GFS, HDFS.
Unit 4	Introduction and architecture for federated cloud computing, Performance prediction for HPC on Cloud. SLA management: Types of SLA, Life cycle of SLA, Traditional approaches of SLA. service catalog, service

	management and functional interfaces of services, cloud portal and its functions, cloud interface standards along with SOAP and REST, system integration and work-flow modeling, cloud service life-cycle phases: service planning, service creation, service operation, and service termination Control layer, its functions and benefits, element and unified manager, software defined approach and techniques for managing IT magazing
Unit 5	managing IT resourcesIntroduction, Global Risk and Compliance aspects in cloud environments and key security terminologies, Technologies for Data security, Data security risk, Cloud computing and identity, Digital identity and access management, Content level security, Security-As-A-Cloud Service.

Text and Reference Books:

- 1. RajkumarBuyya, "Cloud computing principles and paradigms", Wiley
- 2. Gautam Shroff, Enterprise Cloud Computing, Cambridge
- 3. Handbook of Cloud Computing, Springer Publication
- 4. RajkumarBuyya, "Mastering Cloud computing", McGraw Hill
- 5.Tim Mather, Subra K, ShahidL., Cloud Security and Privacy, Oreilly,
- ISBN-13 978-81-8404-815-5
- 6. Dr. Kumar Saurabh,"Cloud Computing", Wiley Publication
- 7. Greg Schulr,"Cloud and virtual data storage networking",CRC Press
- 8. Barrie Sosinsky,"Cloud Computing", Wiley India

9. Kailash Jayaswal, "Cloud computing", Black Book, Dreamtech Press

10. Anthony T. Velte, Cloud Computing: A Practical Approach, Tata McGraw Hill, 2009, ISBN: 070683514

11. Richard Hill, Guide to Cloud Computing: Principals and Practices, Springer

ISBN-10: 1447146026

Mapping of Course outcomes with Program Outcomes and Program Specific Outcomes:

Course]	Progra	m Outo	comes	
outcom e	PO1	PO2	PO3	PO4	PO 5
CO1			1		3
CO2	3	1	2		
CO3	2	1	2	3	3
CO4	3	1	1	2	
CO5	3	1	2		

3 - High 2 – Medium 1 – Low

Assessment:

ISE I: In semester evaluation (ISE I) of 20 marks, will be based on Class Test.

ISE II: Teachers Assessment of 20 marks is based on one of the / or combination of few of the following:

- 1. Quiz
- 2. Assignments
- 3. Question and answer
- 4. PowerPoint presentation

Assessment Pattern:

Assessment Pattern Level No. Knowledge Level ISE I ISE II End Sementary

RA

Approved in XXV IIIth Academic Council Dated: 25th Jun 2024

K1	Remember	10	05	15
K2	Understand	05	05	15
K3	Apply	05	05	15
K4	Analyze	00	05	10
K5	Evaluate	00	00	05
K6	Create	00	00	00
Total Marks 100		20	20	60

Assessment table:

Assessment Tool	K1, K2	K3,K4,K5
	CO1,CO2	CO3
ISE I (20 Marks)	10	10
ISE II (20 Marks)	10	10
ESE Assessment (60 Marks)	30	30
Total Marks 100	50	50

Special Instructions if any: Nil

	CSPEC5002 A	dvanced Computer Network	
Teaching Sche	eme	Evaluation Scheme	
Lectures	4 Hrs/Week	ISE I	20 Marks
		ISE II	20 Marks
Total Credits	4	End-Semester	60 Marks
		Examination	

Course description:

This course discusses the terminology and concepts of the Advance computer network. Subject also discuss the concepts of protocols, network interfaces, and design/performance issues in local area networks and wide area networks, students will be familiar with Network Management and Services. This subject distinguishes between secret and public cryptography. At the end this course assist identify issues in networking technologies.

Course Outcomes:

CO1: To comprehend the advanced computer network knowledge.

CO2: Analyze and implement routing algorithms.

CO3: Evaluate the performances of computer networks

CO4: Design the network protocols using network simulators.

CO5: Discover the knowledge in the field of Software Defined Network.

UNIT 1	Introduction: Brief history of Computer Networks, Network Layer,
	Transport Layer, and Applications Layer: HTTP and other protocols,
	Layering abstraction. Network architecture and protocols, Packet
	switching, Internetworking protocols
UNIT 2	Addressing, IP versions, routing, Routing in the Internet: Intra and inter

Approved in XXV IIIth Academic Council Dated: 25th Jun 2024

	domain routing; Unicast Routing Protocols : RIP, OSPF, BGP, Socket
	programming.
UNIT 3	Network Management and Services : SNMP : Concept, Management
	components, Multi-media over Internet : RTP, RSVP, IP Multicasting,
	VOIP
UNIT 4	Cryptography, Enterprise Network Security : DMZ, NAT, Proxy
UNIT 5	Storage and Networking, Software Defined Networks, Open Stack
	Networking, Neutron.
Referenc	es:
1. B.	A. Forouzan, "TCP/IP Protocol Suite", Tata McGraw Hill edition, Third Edition.
2 N	
2. 1.	Olifer V. Olifer, "Computer Networks: Principles, Technologies and Protocols for Netwo
	sign", Wiley India Edition (1st Edition).
de	
de 3. M	sign", Wiley India Edition (1st Edition).
de 3. M 4. Th	sign", Wiley India Edition (1st Edition). arc Farley, Building Storage Networks , Tata McGraw Hill
de 3. M 4. Th 5. S	sign", Wiley India Edition (1st Edition). arc Farley, Building Storage Networks , Tata McGraw Hill nomas D N Adeau and Ken Grey, Software Defined Networking, O'Reilly, 2013

Mapping of Course outcomes with Program Outcomes and Program Specific Outcomes:

Course		Program Outcomes				
outcome	PO1	PO2	PO3	PO4	PO5	
CO1	1	1	2			
CO2	2	1	2	3		
CO3	1	1	2		3	

2

3

Mapping of Course outcomes with Program Outcomes and Program Specific Outcomes:

3

2

3 - High 2 – Medium 1 –Low

2

1

1

1

Assessment:

CO4

CO5

ISE I: In semester evaluations (ISE I) of 20 marks, each will be based on Class Test

1

ISE II: Teachers Assessment of 20 marks is based on one of the / or combination of few of the following:

- 5. Quiz
- 6. Assignments
- 7. Question and answer
- 8. PowerPoint presentation

Assessment Pattern:

Assessment Pattern Level No.	Knowledge Level	ISE I	ISE II	End Semestor Evamination	٩,
K1	Remember	05	00	Var	Bhill
				Approved in XXV IIIth Acader Dated: 25th Jun 202	

K2	Understand	05	10	12
K3	Apply	05	10	12
K4	Analyze	05	00	12
K5	Evaluate	00	00	12
K6	Create	00	00	00
Total Marks 100		20	20	60

Assessment table:

Assessment Tool	K1, K2	K3,K4,K5
	CO1,CO2	CO3, CO4,CO5
ISE I (20 Marks)	10	10
ISE II (20 Marks)	10	10
ESE Assessment (60 Marks)	24	36
Total Marks 100	44	56

Special Instructions if any: Nil

CSPEC5003: Soft Computing

Teaching		Evaluation Scheme	
Scheme			
Lectures	4 Hrs/Week	ISEI	20 Marks
Tutorial	-	ISEII	20 Marks
Total Credits	4	ESE	60 Marks

Course Description:

Soft computing is an emerging approach to computing which parallel the remarkable ability of the human mind to reason and learn in an environment of uncertainty and imprecision. soft computing is the only solution when we don't have any mathematical modelling of problem solving (i.e., algorithm), need a solution to a complex problem in real time, easy to adapt with changed scenario and can be implemented with parallel computing. It has enormous applications in many application areas such as medical diagnosis, computer vision, hand written character recondition, pattern recognition, machine intelligence, weather forecasting, network optimization, etc.

Course Outcomes:

After successful completion the course, students will be able to:

	Course Outcomes
CO1	Identify and describe soft computing techniques and their roles in building intelligent
	machines
CO2	Apply fuzzy logic and reasoning to handle uncertainty and solve various engineering
CO3	Apply genetic algorithms to combinatorial optimization problems
CO4	Evaluate and compare solutions by various soft computing approaches for a given problem.

Detailed Syllabus:

Unit 1	INTRODUCTION TO SOFT COMPUTING AND NEURAL					
	NETWORKS: Evolution of Computing: Soft Computing Constituents, From					
	Conventional AI to Computational Intelligence: Machine Learning Basics.					
Unit 2	NEURAL NETWORKS: Machine Learning Using Neural Ne					

Approved in XXV IIIth Academic Council Dated: 25th Jun 2024

RAN

	Networks, Feed forward Networks, Supervised Learning Neural Networks, Radial Basis Function Networks : Reinforcement Learning, Unsupervised Learning Neural Networks, Adaptive Resonance architectures, Advances in Neural networks
Unit 3	FUZZY LOGIC: Fuzzy Sets, Operations on Fuzzy Sets, Fuzzy Relations, Membership Functions: Fuzzy Rules and Fuzzy Reasoning, Fuzzy Inference Systems, Fuzzy Expert Systems, Fuzzy Decision Making.
Unit 4	Matlab/Python Lib: Introduction to Matlab/Python, Arrays and array operations, Functions and Files, Study of neural network toolbox and fuzzy logic toolbox, Simple implementation of Artificial Neural Network and Fuzzy Logic
Unit 5	Introduction to genetic algorithm, operators in genetic algorithm –Coding – selection – cross over – mutation, Stopping condition for Genetic algorithm flow, Genetic-neuro hybrid systems, Genetic-Fuzzy rule based systems Recent Trends in deep learning, various classifiers,. Implementation of recently proposed soft computing techniques.

Text and Reference Books:

- Robert J. Schalkoff, "Artificial Neural Networks" -MGH 1.
- 2. S.R.Jang, C.T.sun, "Neuro Fuzzy and Soft Computing ", E.Mizutani-Person
- S.N.Sivanandam, S.N.Deepa, "Principles of Soft Computing", Second Edition, Wiley India Edition 3.
- Jyh:Shing Roger Jang, Chuen:Tsai Sun, EijiMizutani, Neuro: "Fuzzy and Soft Computing ", 4. Prentice: Hall of India, 2003.
- George J. Klir and Bo Yuan, "Fuzzy Sets and Fuzzy Logic: Theory and Applications", Prentice Hall, 5. 1995.

Mapping of Course outcomes with Program Outcomes and Program Specific Outcomes:

C	Program Outcomes					
Course outcome	PO 1	PO 2	PO 3	PO 4	PO 5	
CO1	3	1	2	1	1	
CO2	2	1		2	2	
CO3	2	1	2	2	3	
CO4	3	1	2	3	3	

3 - High 2 – Medium 1 – Low

Assessment:

ISE I: In semester evaluations (ISE I) of 20 marks, each will be based on Class Test I.

ISE II: Teachers Assessment of 20 marks is based on one of the / or combination of few of the following:

- 1. Quiz
- 2. Assignments
- 3. Question and answer
- 4. PowerPoint presentation

Assessment Pattern:

Assessment Pattern Level No.	Knowledge Level	ISE I	ISE II	End Semester Examination
K1	Remember	05	05	15
K2	Understand	05	05	

BAN

K3	Apply	05	05	15
K4	Analyze	05	05	10
K5	Evaluate	00	00	05
K6	Create	00	00	00
Total Marks 100		20	20	60

Assessment table

Assessment Tool	K1, K2	K3
	CO1,CO2	CO3, CO4
ISE I (20 Marks)	10	10
ISE II (20 Marks)	10	10
ESE Assessment (60 Marks)	24	36
Total Marks 100	44	56

Special Instructions if any: Nil

CSPEC5004 : Intelligent Systems				
Teaching Scheme Evaluation Scheme				
Lectures	4 Hrs/Week	ISE I	20 Marks	
		ISE II	20 Marks	
Total Credits	4	End-Semester	60 Marks	
		Examination		

Course Description:

This course discusses the terminology and concepts of intelligent Systems. This subject elaborates the concepts of Inference systems and rule based system. Students will be familiar with handling uncertainty in intelligent systems and also will be familiar with symbolic learning. Students will learn the genetic algorithm.

Course Outcomes Expected:

After Completing the course student will be able to

CO1: To understand the fundamentals of Intelligent system.

CO2: Analyze and apply the rule-based system for maintaining consistency.

CO3: Apply the fuzzy logic conception.

CO4: Design the optimization algorithm using search space searching.

CO5: Discover the knowledge of Genetic algorithm for optimization.

UNIT 1	Introduction: Intelligent Systems, A Spectrum of Intelligent Behavior,				
	Knowledge-Based Systems, The Knowledge Base, Deduction, Abduction, and				
	Induction, The Inference Engine, Declarative and Procedural Programming,				
	Expert Systems, Knowledge Acquisition, Search, Computational Intelligence,				
	Integration with Other Software.				
UNIT 2	Rule-Based Systems: Rules and Facts, A Rule-Based System for Boiler Control,				
	Rule Examination and Rule Firing, Maintaining Consistency, The Closed-World				

	Assumption, Use of Local Variables within Rules, Forward Chaining (a Data-						
	Driven Strategy), A Hybrid Strategy, Explanation Facilities,						
UNIT 3	Handling Uncertainty: Uncertainty, Review of Probability, Probabilistic						
	Reasoning, Bayesian Network, Inferencein Bayesian Network.						
	Agents, Objects, and Frames: Birds of a Feather: Agents, Objects, and Frames,						
	Intelligent Agents, Agent Architectures, Multiagent Systems, Swarm Intelligence,						
	Objects and Agents.						
UNIT 4	Symbolic Learning: Introduction, Learning by Induction, Case-Based Reasoning						
	(CBR),						
	Single-Candidate Optimization Algorithms: Optimization, The Search Space,						
	Searching the Parameter Space, Hill-Climbing and Gradient Descent Algorithms.						
UNIT 5	Genetic Algorithms for Optimization: Introduction, The Basic GA, Selection,						
	Elitism, Multiobjective Optimization, Gray Code, Variable Length Chromosomes,						
	Building Block Hypothesis, Selecting GA Parameters, Monitoring Evolution,						
	Finding Multiple Optima, Genetic Programming.						
References:							
	ian A. Hopgood, "Intelligent Systems for Engineers and Scientists", 3rd Edition CRC Press,						
	9781498783798.						
	rge A. Anastassiou, "Intelligent Systems II Complete Approximation by Neural Network						
Operat	Operators".						

NPTEL Course Link: https://nptel.ac.in/courses/108104049

Mapping of Course outcomes with Program Outcomes and Program Specific Outcomes:

Course outcome	Program Outcomes				
	PO1	PO2	PO3	PO4	PO5
CO1	1		1	2	
CO2	2	1	2	1	1
CO3	1	1	2	1	3
CO4	1	1	2	1	3
CO5	2	1	1	3	2

3 - High 2 – Medium 1 – Low

Assessment:

ISE I: In semester evaluations (ISE I) of 20 marks, each will be based on Class Test

ISE II: Teachers Assessment of 20 marks is based on one of the / or combination of few of the following:

- 9. Quiz
- 10. Assignments
- 11. Question and answer

12. PowerPoint presentation

Assessment Pattern Level No.	Knowledge Level	ISE I	ISE II	End Semester Examination
K1	Remember	05	00	12
K2	Understand	05	10	12
K3	Apply	05	10	12
K4	Analyze	05	00	12
K5	Evaluate	00	00	12
K6	Create	00	00	00
Total Marks 100			20	60

Assessment Pattern:

Assessment table:

Assessment Tool	K1, K2	K3,K4,K5
	CO1,CO2	CO3, CO4,CO5
ISE I (20 Marks)	10	10
ISE II (20 Marks)	10	10
ESE Assessment (60 Marks)	24	36
Total Marks 100	44	56

Special Instructions if any: Nil

CSPEC5005 :	Distributed	Computing	Systems
-------------	-------------	-----------	---------

Teaching		Evaluation Scheme	
Scheme			
Lectures	4 Hrs/Week	ISE I	20 Marks
Tutorial	-	ISE II	20 Marks
Total Credits	4	ESE	60 Marks

Course Description:

Distributed computing is the method of making multiple computers work together to solve a common problem. It makes a computer network appear as a powerful single computer that provides large-scale resources to deal with complex challenges. This course introduces distributed Computing Systems architecture and the concepts of distributed file system. It explores communication in distributed system along with communication protocols.

Course Outcomes:

After successful completion the course, students will be able to:

	Course Outcomes	
CO1	To understand the basics of Computing Systems and its functionalities	
CO2	To study distributed Computing system concepts agreement protocols and Create models for distributed Computing systems.	
CO3	To learn basics of agreement problem along with its solution	
CO4	To learn concurrency control and properties of transaction in Distributed Computing systems.	
L	Approved in XXV IIth A Dated: 25th Ju	

Detailed Syllabus:

Unit 1	Introduction : Introduction to Distributed Computing Systems, System Models, and Issues in Designing a Distributed Operating System, Examples of distributed systems.
Unit 2	Features of Message Passing System, Synchronization and Buffering, Introduction to RPC and its models, Transparency of RPC, Implementation Mechanism, Stub Generation and RPC Messages, Server Management, Call Semantics, Communication Protocols and Client Server Binding.
Unit 3	Introduction, Design and implementation of DSM system. Granularity and Consistency Model, Advantages of DSM, Clock Synchronization, Event Ordering, Mutual exclusion, Deadlock, Election Algorithms.
Unit 4	Task Assignment Approach, Load Balancing Approach, Load Sharing Approach, Process Migration and Threads.
Unit 5	File Models, File Accessing Models, File Sharing Semantics, File Caching Schemes, File Replication, Atomic Transactions, Cryptography, Authentication, Access control and Digital Signatures.

Text and Reference Books:

- 1. Pradeep. K. Sinha: "Distributed Operating Systems: Concepts and Design", PHI, 2007.
- 2. George Coulouris, Jean Dollimore, Tim Kindberg: "Distributed Systems", Concept and Design, 3rd Edition, Pearson Education, 2005.
- A.D. Kshem kalyani, M. Singhal, "Distributed Computing: Principles, Algorithms, and Systems", ISBN: 9780521189842, paperback edition, Cambridge University Press,
 MarchHagitAttiya, Jennifer

Welch, "Distributed Computing: Fundamentals, Simulations, and Advanced Topics", Wiley

Mapping of Course outcomes with Program Outcomes and Program Specific Outcomes:

	Program Outcomes				
Course outcome	PO1	PO2	PO3	PO4	PO5
CO1	2	1	2		
CO2	2	1	2		
CO3	2	1	2	2	
CO4	2	1	2	3	
CO5	3	1	2	2	3

3 - High 2 – Medium 1 – Low

Assessment:

ISE I: In semester evaluations (ISE I) of 20 marks, each will be based on Class Test

ISE II: Teachers Assessment of 20 marks is based on one of the / or combination of few of the following:

- 1.Quiz
- 2. Assignments
- 3. Question and answer

BAN Approved in XXV IIIth Academic Council Dated: 25th Jun 2024

4. PowerPoint presentation

Assessment Pattern Level No.	Knowledge Level	ISE I	ISE II	End Semester Examination
K1	Remember	05	00	12
K2	Understand	10	10	12
K3	Apply	05	10	12
K4	Analyze	00	00	12
K5	Evaluate	00	00	12
K6	Create	00	00	00
Total Marks 100			20	60

Assessment Pattern:

Assessment table:

Assessment Tool	K1, K2	K3,K4,K5
	CO1,CO2	CO3, CO4,CO5
ISE I (20 Marks)	10	10
ISE II (20 Marks)	10	10
ESE Assessment (60 Marks)	24	36
Total Marks 100	44	56

Special Instructions if any: Nil

CSPEC5006 : Internet of Things & Raspberry Pi

Teaching Scheme		Evaluation Scheme	
Lectures	4 Hrs/Week	ISE I	20 Marks
Tutorial	-	ISE II	20 Marks
Total Credits	4	ESE	60 Marks

Course Description: Internet of Things (IoT) is presently a hot technology worldwide. Government, academia, and industry are involved in different aspects of research, implementation, and business with IoT. IoT cuts across different application domain verticals ranging from civilian to defense sectors. These domains include agriculture, space, healthcare, manufacturing, construction, water, and mining, which are presently transitioning their legacy infrastructure to support IoT.

Course Outcomes:

After successful completion the course, students will be able to:

	Course Outcomes
CO1	Identify applicability of IoT in given scenario
CO2	Illustate installation on IoT platform
CO3	Develop programs for Raspberry Pi
CO4	Develop web services
CO5	Apply Security to IoT App

Approved in XXV IIIth Academic Council Dated: 25th Jun 2024

Detailed Syllabus:

Unit 1	What Is the Internet of Things (IoT) Introduction to IOT, Introduction to the		
	Internet of Things, Background, What is Internet of Things (IoT)?,		
	Introduction to Embedded System, Embedded Boards, General Introduction		
	to Arduino Boards, Are Mobile Phones IoT devices?		
	IoT Platforms, Wearable Platform, Embedded Platforms, Cloud Platform for		
	IoT, What IoT means for the developers		
Unit 2	IOT Platforms Getting Started With Arduino Development		
	Environment, Basics of Arduino C Program, Writing our First Arduino		
	Program, Simple Blinking Program, Taking Input from Serial Port, Working		
	With Digital Switches, Working with Sensors (Touch Switch Example), User		
	Defined Functions, ArdOS – Installation, Working With ArdOS		
Unit 3	Introduction to Raspberry Pi with Raspbian OS Raspberry Pi system		
	specifications Ports, Pins and their uses, Raspberry Pi with Raspian OS,		
	Setting Up Raspian OS, Configuring your Raspian, GUI - Lightweight X11		
	Desktop Environment" or in short LXDE, File system layout (Logical layout,		
	Physical Layout) Installing and uninstalling software - Finding Software,		
	Installing Software, Uninstalling Software, Upgrading Software, "Hello		
	World" Programming on Raspberry Pi		
Unit 4	Web Service & Sensors Creating a Web Service to be consumed by connected		
	Devices via Internet, Working with Sensors like, proximity sensors,		
	temperature sensor, image sensor, rfid sensor etc		
Unit 5	Securing IoT Apps- Introduction to Wireless Hacking, Security Model and		
	Threat Taxonomy for Internet of Things (IoT), Privacy Issues in Smart		
	Devices, Introduction to Lightweight Symmetric Cryptosystem, Public Key		
	Cryptography for IoT		

Text and Reference Books:

1. Olivier Hersent, David Boswarthick, Omar Elloumi, The Internet of Things: Key Applications and Protocols, Wiley-Blackwell.

9781449393571

2. Cuno Pfister, "Getting started with the internet of things", ISBN

Web Resources:

https://onlinecourses.nptel.ac.in/noc22_cs53/preview

Mapping of Course outcomes with Program Outcomes and Program Specific Outcomes:

Course outcome	Program Outcomes				
	PO1	PO2	PO3	PO4	PO5
CO1	3		2		
CO2		1			2
CO3		1	1	2	3

BAril var-Approved in XXV IIIth Academic Council Dated: 25th Jun 2024

CO4	2	1	1	3	3
CO5		1	1	3	3

3 - High 2 – Medium 1 – Low

Assessment:

ISE I: In semester evaluations (ISE I) of 20 marks, each will be based on Class Test

ISE II: Teachers Assessment of 20 marks is based on one of the / or combination of few of the following:

- 1. Quiz
- 2. Assignments
- 3. Question and answer
- 4. PowerPoint presentation

Assessment Pattern:

Assessment Pattern Level No.	Knowledge Level	ISE I	ISE II	End Semester Examination
K1	Remember	05	00	12
K2	Understand	10	10	12
K3	Apply	05	10	12
K4	Analyze	00	00	12
K5	Evaluate	00	00	12
K6	Create	00	00	00
Total Marks 100		20	20	60

Assessment table:

Assessment Tool	K1, K2	K3,K4,K5
	CO1,CO2	CO3, CO4,CO5
ISE I (20 Marks)	10	10
ISE II (20 Marks)	10	10
ESE Assessment (60 Marks)	24	36
Total Marks 100	44	56

Special Instructions if any: Nil

CSVSE5001 Mini Project – I			
Teaching Scheme Examination Scheme			
Practical:04Hrs. /Week	ISEII	25Marks	
Credit:02 ESE 25Marks			

Course Objectives:

- 1. To make the student conversant with industrial activities / project execution activities
- 2. To exemplify various industrial aspects in manufacturing processes and industrial design
- 3. Student will able to analyze and solve industrial mini problem / work on in-house project

RAN Approved in XXV IIIth Academic Council Dated: 25th Jun 2024

Course Outcomes:

After completing the course students will able to

	Course Outcomes			
CO1	Illustrate industrial project / in-house project			
CO2	Identify industrial problems / in-house			
CO3	Integrate and apply the knowledge gained through different courses into practical problems			
CO4	Prepare a consolidated report			

Detailed description:

- 1. Student shall identify and collect pragmatic industrial information / in-house project / social problem as a Mini Project I.
- 2. Student shall obtain a solution by applying suitable techniques.
- 3. Student has to exhibit the continuous progress review through regular reporting and presentations.
- 4. The candidate shall submit the report on Mini Project I in standard format for satisfactory completion of the work, duly approved and certified by the concerned guide, Head of the Department and Principal.
- 5. The candidate will be assessed during ESE by two examiners, one of whom will be the guide and other is necessarily an external examiner appointed by the BoS / Head of Department / BoS Chairman. The assessment will be broadly based on work undergone, content delivery, presentation skills, documentation and report.
- 6. For standardization and documentation, it is recommended to follow the formats and guidelines approved by the Board of Studies.

Assessment:

ISE II- Continuous Assessment of individual student Maximum Marks-25 ESE – Viva Voce based on presentation and report Maximum Marks-25

INCCC5001: Yoga (Audit Course)

Teaching Scheme		Evaluation Scheme	
Practical	4 Hrs/Week	ISE I	
Total Credits		ISE II	
		ESE \	
		No.	Approved in XXV IIIth Academic Cour

Dated: 25th Jun 2024

Course Description: Yoga - In today's stressful life, there is much more need to experience relaxation and remain focus. The inner connect is very much needed to retain stability. Beyond physical exercise there is much more to do in the field of Yoga. The content of this course includes Yoga, Pranayama, Meditation, Relaxation, rejuvenation and connection with our own self. The introduction of such an experiential course helps to boost self confidence and with regulation of mind through meditation improves concentration. Meditation is basically training of mind and helps to regulate it. Along with experiential learning, the students are also exposed to learnings contained in the supported literature.

Course Outcomes:

After completing the course, students will be able to:

CO1	Understand and perform Yoga Asana
CO2	Gain knowledge about Pranayama and perform it.
CO3	Apply the concept of Mediation in everyday life and studies

Syllabus:

(1) Perfection in at least 3 types of Yoga-asana (Trikonasan, Konasan and Ushtrasan)

- (2) Perfection in at least 3 types of Pranayama (Anulom-Vilom, Bhramari and Kapalbhati)
- (3) Regular practice of Yoga-asana, Pranayama and Meditation for 10 minutes during the allottedperiods as per the timetable and daily at home.

TEXTBOOKS:

- 1. The Heartfulness way", Heartfulness Kamlesh Patel and Joshua Pollock
- 2. The Yoga Sutras of Patanjali Sri Swami Satchidananda
- 3. The Yamas and Niyamas Deborah Adele
- 4. Yoga Practices for Anxiety and Depression --- H. R. Nagendra & R. Nagarathana

Assessment:

The evaluation is based on participating and performing Yoga, Pranayama and meditation regularly and perfectly under the guidance by Yoga Teachers in class as per schedule. Meditation trainers will observe intrinsic goodness, right attitude and happy and joyous way of doing things.

MERMC5001 Research Methodology					
Teaching Scheme Examination Scheme					
Lectures: 04 Hrs. / Week ISEI 20Marks					
Credits: 04 ISEII 20Marks					
EndSemesterExamination 60Marks					

Course Objectives:

Approved in XXV IIIth Academic Council Dated: 25th Jun 2024

- 1. To guide students from understanding foundational research concepts to critically formulating research problems, culminating in the adept creation of comprehensive research plans and literature reviews.
- 2. To develop a comprehensive understanding of various research methods, both qualitative and quantitative
- 3. To facilitate students in analysing, evaluating, and creating research proposals.
- 4. To attain mastery in data collection methods, sampling, data analysis techniques, and result interpretation for robust research outcomes.
- 5. To Equip students with the skills to proficiently create and present diverse research reports, encompassing various formats, oral delivery, technical writing, and ethical awareness regarding plagiarism.

Course Outcomes:

After completing the course students will able to

	Course Outcomes		
CO1	Develop the ability to comprehend core research concepts, define key elements like		
	variables and hypotheses, and critically evaluate literature to identify research gaps.		
CO2	Justify their chosen research methods and explain their advantages and limitations.		
CO3	Create well-structured research proposals that include clear research objectives,		
	methods, and expected outcomes.		
CO4	Proficient in using data analysis techniques relevant to their chosen research		
	methods, such as statistical analysis for quantitative research or thematic analysis for		
	qualitative research.		
CO5	Create comprehensive research reports in diverse formats, such as academic papers,		
	presentations, and technical reports.		

Detailed Syllabus:

Unit 1	Introduction to RM: Meaning of Research, Objectives of Research, Research
	Approaches, Significance of Research, Research Methods versus Methodology,
	Research and Scientific Method, Research Process, Criteria of Good Research,
	Defining the Research Problem, Selecting the Problem, Technique Involved in
	Defining a Problem, Research Design, Important Concepts Relating to Research
	Design, Developing a Research Plan, Literature review.
Unit 2	Methods of Research: Qualitative and quantitative methods of research like
	Historical, case study, ethnography, exposit facto, documentary and content
	analysis, survey (Normative, descriptive, evaluative etc.) field and laboratory
	experimental studies. Characteristics of methods and their implications in research
	area.
Unit 3	Development of research proposal: Research proposal and its elements
	Formulation of research problem-criteria of sources and definition Development
	of objectives and characteristics of objectives. Development hypotheses and
	applications.
Unit 4	Methods of data collection:Concept of sampling and other concepts related to
Omt 4	sampling. Probability and non-probability samples, their characteristics and
	implications. Tools of data collections, their types, attributes and uses.
	Redesigning, research tools-like questionnaire, opinionnaire, observation,
	interviews, scales and tests etc.
	Methods of data analysis: Analysis of qualitative data based on various tools.
	Analysis of quantitative data and its presentation with tables, graphs etc. Statistical
	tools and techniques of data analysis-measures of central tendency, dispersion.
	Decision making with hypothesis testing through parametric and non-parametric
TT	tests. Validity and delimitations of research findings.
Unit 5	Interpretation and Report Writing: Meaning of Interpretation, Techr

Approved in XXV IIIth Academic Council Dated: 25th Jun 2024 Interpretation, Significance of Report Writing, Steps in Writing Report, Layout of the Research Report, Types of Reports, Oral Presentation, Mechanics of Writing a Research Report, Writing a technical paper, plagiarism and its implications.

Text and Reference Books

- 1. Garg B.L., Karadia R., Agarwal F. and Agarwal U.K., An introduction to Research Methodology, RBSA Publishers, 2002
- 2. Kothari C.R., Research Methodology: Methods and Techniques. New Age International, 1990.
- 3. Merriam S. B., Tisdell E. J., Qualitative Research: A Guide to Design and Implementation, 4th edition, John Wiley & Sons, 2016.
- 4. Creswell J. W., Research Design: Qualitative, Quantitative and Mixed Methods Approaches, 4th edition, SAGE Publications, Inc, 2014.
- 5. Olsen C., Devore J., Peck R., Introduction to Statistics and Data Analysis, 5th edition, Brooks/Cole, 2015.
- 6. Panneerselvam R., Research Methodology, 2nd edition, PHI Learning, 2014.

Assessment: ISEI(Class Test), ISEII (TA) & ESE

TA: Students will perform one or more of the following activities

- 1. Surprise Test
- 2. Assignment
- 3. Quiz
- 4. Any other activity suggested by course coordinator

Assessment Pattern

Assessment Pattern Level No.	Knowledge Level	ISE I	ISE II	End Semester Examination
K1	Remember	05	02	06
K2	Understand	10	08	24
K3	Apply	00	03	09
K4	Analyze	05	04	12
K5	Evaluate	00	03	09
K6	Create	00	00	00
Total		20	20	60

Mapping of Course Outcomes with Program Outcomes:

Outcomes	PO1	PO2	PO3	PO4	PO5
CO1	3	2	3		
CO2	2	2	2		
CO3	2		3	1	
CO4	1	1	3	1	
CO5	1	3	2		2

1 – Low, 2 – Medium, 3 – High

Semester II

CSPCC5004: Advanced Data Mining

Teaching

Evaluation Scheme

10	L
W2	Bhie
Approved in XXV IIIti	n Academic Council
Dated: 25 th	Jun 2024

Scheme			
Lectures	4 Hrs/Week	ISE I	20 Marks
Tutorial	-	ISE II	20 Marks
Total Credits	4	ESE	60 Marks

Course Description: The objective of this course is to introduce Advanced Data Mining techniques. Application of data mining in web mining, pattern matching, time series and cluster analysis is included to aware students of broad data mining areas.

Course Outcomes:

After successful completion the course, students will be able to:

	Course Outcomes			
CO1	Understand the characteristics of advanced data mining techniques			
CO2	Apply various unsupervised learning methods to real life problems			
CO3	Apply sequential mining to data streams			
CO4	Apply advanced data mining to time series data			
CO5	Study different web mining techniques			

Detailed Syllabus:

Unit 1	Data Mining: Characteristics, Mining frequent patterns, association and correlations; Sequential Pattern Mining concepts, primitives, scalable methods;
Unit 2	Classification and prediction; Cluster Analysis – Types of Data in Cluster Analysis,
	Partitioning methods, Hierarchical Methods; Transactional Patterns and other
	temporal based frequent patterns. Clustering graph and network data, advanced
	cluster analysis.
Unit 3	Mining Data Streams, Methodologies for stream data processing and stream data
	systems, Frequent pattern mining in stream data, Sequential Pattern Mining in Data
	Streams, Classification of dynamic data streams, Class Imbalance Problem; Graph
	Mining; Social Network Analysis;
Unit 4	Mining Time series Data, Periodicity Analysis for time related sequence data, Trend analysis, Similarity search in Time-series analysis
Unit 5	Web Mining, Mining the web page layout structure, mining web link structure, mining multimedia data on the web, Automatic classification of web documents and web usage mining; Distributed Data Mining.

Text and Reference Books:

Jiawei Han and M Kamber, Data Mining Concepts and Techniques, Second Edition, Elsevier Publication, 2011.
 Vipin Kumar, Introduction to Data Mining - Pang-Ning Tan, Michael Steinbach, Addison Wesley, 2006.
 G Dong and J Pei, Sequence Data Mining, Springer, 2007.

Web Resources:

NPTEL course : Data mining https://onlinecourses.nptel.ac.in/noc21_cs06/preview

Mapping of Course outcomes with Program Outcomes and Program Specific Outcomes:

Course outcome Program Outcomes

RAN Approved in XXV IIIth Academic Council Dated: 25th Jun 2024

	PO1	PO2	PO3	PO4	PO5
CO1	3		2		
CO2		1	2	3	3
CO3	2	1	1	2	3
CO4	2	1	1	2	3
CO5	3	1	2	2	2

3 - High 2 – Medium 1 – Low

Assessment:

ISE I: In semester evaluations (ISE I) of 20 marks, each will be based on Class Test

ISE II: Teachers Assessment of 20 marks is based on one of the / or combination of few of the following:

- 1. Quiz
- 2. Assignments
- 3. Question and answer
- 4. PowerPoint presentation

Assessment Pattern:

Assessment Pattern Level No.	Knowledge Level	ISE I	ISE II	End Semester Examination
K1	Remember	05	00	12
K2	Understand	10	10	12
K3	Apply	05	10	12
K4	Analyze	00	00	12
K5	Evaluate	00	00	12
K6	Create	00	00	00
Total Marks 100		20	20	60

Assessment table:

Assessment Tool	K1, K2	K3,K4,K5
	CO1,CO2	CO3, CO4,CO5
ISE I (20 Marks)	10	10
ISE II (20 Marks)	10	10
ESE Assessment (60 Marks)	24	36
Total Marks 100	44	56

Special Instructions if any: Nil

CSPCC5005 : Recommender System

Teaching		Evaluation Scheme	
Scheme			
Lectures	4 Hrs/Week	ISE I	20 Marks
Tutorial	-	ISE II	20 Marks
Total Credits	4	ESE	60 Marks

VAU Approved in XXV IIIth Academic Council Dated: 25th Jun 2024

B

Course Description: This course is process seeks to predict user preferences. This specialization covers all the fundamental techniques in recommender systems, from non-personalized and project-association recommenders through content-based and collaborative filtering techniques

Course Outcomes

Students will be able to:

CO1	Relate techniques for making recommendations, including non-personalized, content- based, and collaborative filtering
CO2	Illustrate automation of a variety of choice-making strategies with the goal of providing affordable, personal, and high-quality recommendations.
CO3	Apply techniques for making recommendations, including non-personalized, content- based, and collaborative filtering
CO4	Evaluate recommender systems on the basis of metrics such as accuracy, rank accuracy, diversity, product coverage, and serendipity
CO4	Design recommendation system for a particular application domain

Detailed Syllabus:

Unit 1	Introduction: Overview of Information Retrieval, Retrieval Models, Search and Filtering Techniques: Relevance Feedback, User Profiles, Recommender system functions, Matrix operations, covariance matrices, Understanding rating Applications of recommendation systems, Issues with recommender system.	
Unit 2	Content-based Filtering: High level architecture of content-based systems, Advantages and drawbacks of content based filtering, Item profiles, Discovering features of documents, pre-processing and feature extraction, Obtaining item features from tags, Methods for learning user profiles, Similarity based retrieval, Classification algorithms.	
Unit 3	Collaborative Filtering: User-based recommendation, Item-based recommendation, Model based approaches, Matrix factorization, Attacks on collaborative recommender systems.	
Unit 4	Hybrid approaches: Opportunities for hybridization, Monolithic hybridization design: Feature combination, Feature augmentation, Parallelized hybridization design: Weighted, Switching, Mixed, Pipelined hybridization design: , Limitations of hybridization strategies	
Unit 5	Types of Recommender Systems: Recommender systems in personalized web search, knowledge-based recommender system, Social tagging recommender systems, Trust-centric recommendations, Group recommender systems. Evaluation of RS.	

Text/References:

BAril Var-Approved in XXV IIIth Academic Council Dated: 25th Jun 2024

- 1. Jannach D., Zanker M. and FelFering A., Recommender Systems: An Introduction, CambridgeUniversity Press (2011), 1st ed.
- 2. Charu C. Aggarwal, Recommender Systems: The Textbook, Springer (2016), 1st ed.
- 3. Ricci F., Rokach L., Shapira D., Kantor B.P., Recommender Systems Handbook, Springer(2011),1st ed.
- 4. Manouselis N., Drachsler H., Verbert K., Duval E., Recommender Systems For Learning, Springer(2013), 1st ed.

Research papers : "Recommende System Challenges and Solution survey", IEEE 2019 International Conferences.

Mapping of Course Outcomes with Program outcomes

Cours		Program Outcomes				
e outco me	PO 1	PO 2	PO 3	РО 4	PO5	
CO1	3	1	2			
CO2	2	1	2	2	2	
CO3	2	1	2	3	3	
CO4	3	1	2	2	3	
CO5	3	1	2	3	2	

3 - High 2 – Medium 1 – Low

Assessment:

ISE I :In semester evaluations 20 marks, each will be based on Class Test

ISE II: Teachers Assessment of 20 marks is based on one of the / or combination of few of the following: 1. Quiz

- 2. Assignments
- 3. Question and answer
- 4. PowerPoint presentation

Assessment Pattern:

Assessment Pattern Level No.	Knowledge Level	ISE I	ISE II	End Semester Examination
K1	Remember	10	05	10
K2	Understand	05	05	10
K3	Apply	05	05	10
K4	Analyze	00	02	10
K5	Evaluate	00	03	10
K6	Create	00	00	10
Total Marks 100			20	60

Assessment table:

Assessment Tool	K1, K2	K3,K4,K5,K6	
	CO1,CO2	CO3, CO4	Bhul

ISE I (20Marks)	10	10
ISE II (20 Marks)	10	10
ESE Assessment (60 Marks)	20	40
Total Marks 100	40	60

CSPCC5006 : Computer Vision

Teaching		Evaluation Scheme	
Scheme			
Lectures	3 Hrs/Week	ISE I	20 Marks
Tutorial		ISE II	20 Marks
Total Credits	3	ESE	60 Marks

Course Description:

This course provides an introduction to computer vision, including fundamentals of image formation, camera imaging geometry, feature detection and matching, stereo, motion estimation and tracking, image classification, scene understanding, and deep learning with neural networks.

Course Outcomes:

After successful completion the course, students will be able to:

	Course Outcomes
CO1	Identify basic concepts, terminology, theories, models and methods in the field of computer vision.
CO2	Articulate the known principles of human visual system in terms of mathematical representation.
CO3	Illustrate the basic methods of computer vision related to edge detection and detection of other
	primitives, stereo, motion and object recognition.
CO4	Suggest a design of a computer vision system for a specific problem.
CO5	Analyze the Statistical texture description.

Detailed Syllabus:

Unit 1	The image, its representations and properties – image representations a
	few concepts, Image digitization, Digital image properties, Color images,
	Pixel relationship, Image Enhancement- Spatial filtering.
Unit 2	The Image, Its mathematical and physical background – Linear integral
	transforms,
	Image Pre-processing - Pixel brightness transformations, Geometric
	transformations, Local pre-processing, Image restoration.
Unit 3	Segmentation I–
	Thresholding, Edge-based segmentation, Evaluation issues in segmentation.
	Segmentation II–
	Mean Shift Segmentation, Active contour models – snakes, Geometric
	deformable model – level sets and geodesic active contours.
Unit 4	Use of 3D vision – Shape from X, Full 3D objects, 3D model-based vision,
	2D view-based representations of a 3D scene, 3D reconstruction from an
	unorganized set of 2D views – a case study. Human Vision: Stereopsis.
Unit 5	Texture – Statistical texture description, Syntactic texture description
	methods, Hybrid texture description methods, Texture recognition method
	applications.

- 1. Digital Image processing and Computer Vision", Sonka-Hlavac-Boyle, CENGEAGE LEARNING
- **2.** Image Processing for Computer Graphics and Vision, Jonas Gomes, Luiz Velho, Alejandro C. Frery, Springer publication, 2ndedi.

3.Computer Vision, A Modern Approach, David Forsyth, Jean Ponce, ISBN-13: 978-0136085928
4. Computer Vision: Algorithms and Applications (Texts in Computer Science), Richard Szeliski , Springer, ISBN-13: 978-1848829343

Web Resources:

NPTEL course : Digital Image Processing https://onlinecourses.nptel.ac.in/noc22_ee116/preview

Mapping of Course outcomes with Program Outcomes and Program Specific Outcomes:

	Program Outcomes					
Course outcome	PO1	PO2	PO3	PO4	PO5	
CO1	3	1	3			
CO2	3	1	2	2		
CO3	2	1	2	3	3	
CO4	2	1	2	3	3	
CO5	2	1	2	2	2	

3 - High 2 – Medium 1 – Low

Assessment:

ISE I: In semester evaluations (ISE I) of 20 marks, each will be based on Class Test

ISE II: Teachers Assessment of 20 marks is based on one of the / or combination of few of the following:

- 1. Quiz
- 2. Assignments
- 3. Question and answer
- 4. PowerPoint presentation

Assessment Pattern:

Assessment Pattern Level No.	Knowledge Level	ISE I	ISE II	End Semester Examination
K1	Remember	05	00	10
K2	Understand	10	05	10
K3	Apply	05	10	15
K4	Analyze	00	05	15
K5	Evaluate	00	00	10
K6	Create	00	00	00
Total Marks 100		20	20	60

Assessment table:

Assessment Tool	K1, K2	K3,K4, K5	
	CO1,CO2	CO3, CO4,CO5	
ISE I (20 Marks)	10	10	
ISE II (20 Marks)	10	10	

Approved in XXV IIIth Academic Council Dated: 25th Jun 2024

ESE Assessment (60 Marks)	20	40
Total Marks 100	40	60

Special Instructions if any: Nil

Teaching S	cheme	Evaluation Schem	e
Practical	2 Hrs/Week	ISE II	25 Marks
Total	1	ESE	
Credits			
	tcomes Expected:		
	pletion of this course stu		- (
		e and generate histogram equalization	
		es to enhanced quality of input im	
		ethods and segmenting the images	S.
CO4:	To extract the features from	n images.	
Suggest			
-	ay gray scale images.		
•	ement histogram equalization	on.	
To desig	n non-linear filtering.		
To impl	ement 2-D DFT and DCT m	odel	
To deter	mine the edge detection pro	blem.	
To imple	ement Edge Detection, Line	Detection and Corner Detection.	
To imple	ement Segmentation probler	n using.	
Write a	program to compute the SIF	T feature descriptors of the imag	е.
		Computer Vision Applications.	

Teaching		Evaluation Scheme	
Scheme			
Lectures	3 Hrs/Week	ISE I	20 Marks
Tutorial	-	ISE II	20 Marks
Total Credits	3	ESE	60 Marks

CSPEC5007: Speech and Natural Language Processing

BAN

Course Description: This course includes the concepts and techniques of Natural language processing for Approved in XXV IIIth Academic Council Dated: 25th Jun 2024

based on part of speech and Constituency parsing & analyzing speech signal in time and frequency domain.

Course Outcomes:

After successful completion the course, students will be able to:

	Course Outcomes			
CO1	Describe the mathematical and linguistic foundations underlying approaches for NLP modules in Text processing and speech recognition.			
CO2	Demonstrate the working of sequence models for text processing.			
CO3	Use signal processing techniques to analyze and represent the speech signal.			
CO4	Discuss statistical approach for automatic speech recognition including featureextraction, acoustic modeling and language modeling.			
CO5	Develop a deep learning models associated with the design, implementation, training and			
	deployment of speech and text processing.			

Detailed Syllabus:

Unit 1	Language Model and Part-of-Speech- Different Levels of NLP,Text					
	Normalization, Minimum Edit Distance, N-gram LanguageModels Smoothing					
	,Huge Language Models, Perplexity's Relation to Entropy, Part-of-Speech					
	Tagging , HMM for Part-of-Speech Tagging, Viterbi algorithm ,Named					
	Entities and Named Entity Tagging, Conditional Random Fields (CRFs) -					
	Evaluation of Named ,Entity Recognition.					
Unit 2	Constituency Parsing and Lexical Semantics - Introduction to					
	Parsing, Linguistic Constituents and Constituency tests, Partial or Shallow					
	Parsing, Dependency Parsing, Word Senses, Relations Between Senses,					
	WordNet: A Database of Lexical Relations, Methods for Word Sense					
	Disambiguation.					
Unit 3	Feature Representation for Natural Language Processing-					
	Vector Semantics - Words and Vectors - Cosine for measuring similarity -TF-					
	IDF: Weighing terms in the vector - Point wise Mutual Information (PMI) -					
	Neural Language Models - WordEmbeddings: Word2Vec, Glove and Fast text.					
Unit 4	Deep learning architecture for NLP- RNNs as Language Models, Stacked					
	and Bidirectional RNN architectures, LSTM, Self-Attention Networks:					
	Transformers, Transformers as Language Models, Applications of NLP:					
	Sentiment analysis, Question and answering, Chat Bot.					
Unit 5	Automatic Speech Recognition:- Introduction Acoustic feature: Speech					
	production, Raw Waveform, MFCC, Phones, Statistical Speech					
	Recognition: Acoustic Models, Language Model, HMM Decoding, Error					
	Metrics ,DNN/HMM Hybrid ,Text to Speech , WaveNet for Text to Speech.					

Text and Reference Books:

1.Dan Jurafsky, James H. Martin "Speech and Language Processing", Draft of 3rdEdition, Prentice Hall 2022.

2. Uday Kamath, John Liu, James Whitaker "Deep Learning for NLP and SpeechRecognition", 1st Edition, Springer 2019.

3. Ben Gold, Nelson Morgan, Dan Ellis "Speech and Audio Signal Processing: Processing

and Perception of Speech and Music", 2nd Edition, John Wiley & Sons, 2011.

4. Jacob Benesty, M. M. Sondhi, Yiteng Huang "Springer Handbook of Speech Processing", 1st Edition, Springer, 2008

Research papers : Natural Language Processing and its applications in machine translation: Adicronic Review", IEEE 2020 3rd international Conference.

RA

Approved in XXV IIIth Academic Council Dated: 25th Jun 2024

Web Resources:

NPTEL course :1. https://onlinecourses.nptel.ac.in/noc23_cs45/preview 2. https://archive.nptel.ac.in/noc/courses/noc19/SEM2/noc19-cs56/

Mapping of Course outcomes with Program Outcomes and Program Specific Outcomes:

C	Program Outcomes					
Course outcome	PO1	PO2	PO3	PO4	PO5	
CO1	3	1	3			
CO2	2	1	2	2	3	
CO3	2	1	2	2	2	
CO4	2	1	2	2	3	
CO5	2	1	2	3	3	

3 - High 2 – Medium 1 – Low

Assessment:

ISE I: In semester evaluations (ISE I) of 20 marks, each will be based on Class Test

ISE II: Teachers Assessment of 20 marks is based on one of the / or combination of few of the following:

- 1. Quiz
- 2. Assignments
- 3. Question and answer
- 4. PowerPoint presentation

Assessment Pattern:

Assessment Pattern Level No.	Knowledge Level	ISE I	ISE II	End Semester Examination
K1 Remember		05	00	12
K2	Understand	10	10	12
K3	Apply	05	10	12
K4	Analyze	00	00	12
K5	Evaluate	00	00	12
K6	Create	00	00	00
Total Marks 100		20	20	60

Assessment table:

Assessment Tool	K1, K2	K3,K4,K5
	CO1,CO2	CO3, CO4,CO5
ISE I (20 Marks)	10	10
ISE II (20 Marks)	10	10
ESE Assessment (60 Marks)	24	36
Total Marks 100	44	56

Special Instructions if any: Nil

CSPEC5008 : Cryptography and Information Security

Teaching		Evaluation Scheme	
Scheme			
Lectures	3 Hrs/Week	ISE I	20 Marks
Tutorial	-	ISE II	20 Marks
Total Credits	3	ESE	60 Marks

Course Description:

This course develops an understanding of the algorithms used to protect users connected over the network and to study some of the design choices behind these algorithms. It aims is to develop a workable knowledge of the mathematics used in cryptology using some algorithms. The course emphasizes to give an understanding of previous attacks on cryptosystems with the aim of preventing future attacks. A wide variety of basic cryptographic primitives will be discussed along with recent developments in some advanced topics.

Course Outcomes:

After successful completion the course, students will be able to:

	Course Outcomes
C01	Analyze security issues in computer system.
CO2	Study Advance algorithms for information interchange
CO3	Design and evaluate the Cryptosystems.
CO4	Study policies, standards and regulations related to information security.
CO5	Identify and resolve issues in computer networking environment.

Detailed syllabus:

UNIT 1	Overview: Computer Security Concepts, The OSI Security Architecture, A Model for Network Security, Block Ciphers and the Data Encryption Standard.				
UNIT 2	Advanced Encryption Standard: The Origins AES, AES Structure, AES Round Functions, AES Key Expansion, An AES Example, AES Implementation.				
UNIT 3	Public-Key Cryptography and RSA: Principles of Public-Key Cryptosystems, The RSA Algorithm, Other Public-Key Cryptosystems: Diffie-Hellman Key Exchange, Elliptic Curve Cryptography. Cryptographic hash function(SHA),Digital signature standard(DSS)				
UNIT 4	Information Security Overview, Risk Analysis, Compliance with Standards, Regulations, and Laws, Secure Design Principles, Security Policies, Standards, Procedures, and Guidelines, Data Security: Securing Unstructured Data, Information Rights Management, Storage Security, Database Security.				

An-BAN Approved in XXV IIIth Academic Council Dated: 25th Jun 2024

	Network Security: Secure Network Design, Network Device Security, Firewalls,			
UNIT 5	Virtual Private Networks, Wireless Network Security, Intrusion Detection and Prevention Systems.			

Text and Reference Books:

- 1. William Stallings "Cryptography And Network Security Principles And Practice Fifth Edition" (Fifth Edition) Pearson Education.
- 2. Mark Rhodes-Ousley "The Complete Reference Information Security Second Edition" Second Edition, Tata McGraw Hill.
- 3. N. Olifer V. Olifer, "Computer Networks:Principles, Technologies and Protocols for Network

design", Wiley India Edition (1st Edition).

- 4. Marc Farley, Building Storage Networks, Tata McGraw Hill.
- 5. S. Tanenbaum, "Computer Networks", Pearson Education, Fourth Edition.

Mapping of Course outcomes with Program Outcomes and Program Specific Outcomes:

Cours	Program Outcomes					
e outco me	PO 1	PO 2	PO 3	PO 4	PO 5	
CO1	3	1	3			
CO2	3		2	2	2	
CO3	3	1	2	3	3	
CO4	3	1	3			
CO5	2	1	3	3	3	

3 - High 2 – Medium 1 – Low

Assessment:

ISE I: In semester evaluation of 20 marks, will be based on Class Test.

ISE II: Teachers Assessment of 20 marks is based on one of the / or combination of few of the following:

- 1. Quiz
- 2. Assignments
- 3. Question and answer
- 4. PowerPoint presentation

Assessment Pattern:

Assessment Pattern	Knowledge	ISE	ISE	End Semester
Level No.	Level	Ι	II	Examination
K1	Remember	5	5	10
K2	Understand	15	5	10
K3	Apply	5	5	20
K4	Analyze	0	5	20
K5	Evaluate	0	0	0 \00.

RAN -Approved in XXV IIIth Academic Council Dated: 25th Jun 2024

K6	Create	0	0	0
Total Marks 100		20	20	60

Assessment table:

Assessment Tool	K1, K2	K3
	CO1,CO2	CO3, CO4,CO5
ISE I (20 Marks)	15	5
ISE II (20 Marks)	10	10
ESE Assessment (60 Marks)	25	35
Total Marks 100	50	50

Special Instructions if any: Nil

CSPEC5009: Biometrics

Teaching		Evaluation Scheme	
Scheme			
Lectures	3 Hrs/Week	ISE I	20 Marks
Tutorial	-	ISE II	20 Marks
Total Credits	3	ESE	60 Marks

Course Description:

The modern meaning of the term biometrics used in Computer Science, and consequently of the term biometric system, explicitly mainly refers to the automatic identification or verification of the identity of a person based on physical or behavioral characteristics.

The course provides basic knowledge and skills necessary for the design and development of automated systems for the recognition of people on the based biometric features.

Biometrics finds applications in biology, medicine, genetics, in the agricultural and forestry sciences, environmental science and other related fields.

Course Outcomes:

After successful completion the course, students will be able to:

	Course Outcomes
C01	To understand the basics of biometrics and its functionalities
CO2	To study biometric evaluation and feature extraction
CO3	To learn different types of biometric recognition system
CO4	To learn to develop applications with biometric security
CO5	Illustrate the multidisciplinary technologies for biometric applications

Detailed Syllabus:

ionalities: verification and identification, Biometric system, entication, Biometric systems errors, Applications of Biometric systems, rity and privacy issues, attacks on biometric systems, Application areas isition and Pre-processing Basics : Image acquisition, working with		
rity and privacy issues, attacks on biometric systems, Application areas isition and Pre-processing Basics : Image acquisition, working with		
isition and Pre-processing Basics: Image acquisition, working with		
rent image types, Feature types and descriptors, Geometric		
formations, masking, filters		
netric System Evaluation: Identification and verification, Threshold,		
e distribution, FAR and FRR, System design issues, Positive/negative		
ification, Authentication methods, and statistical test of significance,		
Trade-offs b/w security and convenience.		
Physiological Biometrics: Overview, Properties of physiological biometrics,		
Fingerprint: friction ridge pattern, Face recognition, IRIS recognition, Other		
traits, Challenges, Soft biometrics, Open Issues.		
vioral Biometrics: Overview, Properties of behavioral biometrics, Gait,		
ature, Keystroke based recognition, Error sources, Open issues.		
Multimodal Biometrics: Suitable biometric, Biometric attributes, Zephyr		
s, Multi biometrics. Fusion methods, Multimodal identification.		
Biometric System Vulnerabilities: Circumvention, Covert acquisition,		
Quality control, Template generation, Interoperability, Data storage challenges.		
Biometric Applications: Application areas, User system interaction,		
ication development, Design validation, Disaster recovery plan,		
tenance, Application concerns: effect of genetics,		
her, aging etc, Privacy concerns.		

Text and Reference Books:

1. A.A. Ross, P. Flynn, and A.K. Jain, Handbook of Biometrics, Springer, ISBN: 9780387710402 2. J.L. Wayman, A. Jain, D. Maltoni, and D. Maio, Biometric Systems Technology, Design and Performance

Evaluation, Springer, ISBN: 9781852335960

3. Guide to Biometrics, R. M. Bolle, S. Pankanti, N.K. Ratha, A. W. Senior, J. H. Connell, Springer 2009 ISBN 978-0387400891,

5. Ruud M.Bolle, Sharath Pankanti, Nalini K. Ratha, Andrew W. Senior, Jonathan H

RA

Biometrics, Springer 20096. Paul Reid ,Biometrics for network security, Paul Reid, Hand book of Pearson

Web Resources:

NPTEL course : Biometrics : https://nptel.ac.in/courses/106104119

Mapping of Course outcomes with Program Outcomes and Program Specific Outcomes:

	Program Outcomes				
Course outcome	PO1	PO2	PO3	PO4	PO5
CO1	3	1	3		
CO2	3	1	2	2	
CO3	2	1	2	2	
CO4	2	1	3	2	3
CO5	3	1	3	3	3

3 - High 2 – Medium 1 – Low

Assessment:

ISE I: In semester evaluations (ISE I) of 20 marks, each will be based on Class Test

ISE II: Teachers Assessment of 20 marks is based on one of the / or combination of few of the following:

- 1. Quiz
- 2. Assignments
- 3. Question and answer
- 4. PowerPoint presentation

Assessment Pattern:

Assessment Pattern Level No.	Knowledge Level	ISE I	ISE II	End Semester Examination
K1	Remember	05	00	12
K2	Understand	10	10	12
К3	Apply	05	10	12
K4	Analyze	00	00	12
K5	Evaluate	00	00	12
K6	Create	00	00	00
Total Marks 100		20	20	60

Assessment table:

Assessment Tool	K1, K2	K3,K4,K5
	CO1,CO2	CO3, CO4,CO5
ISE I (20 Marks)	10	10
ISE II (20 Marks)	10	10

An-Bhi Approved in XXV IIIth Academic Council Dated: 25th Jun 2024

ESE Assessment (60 Marks)	24	36
Total Marks 100	44	56

Special Instructions if any: Nil

CSPEC5010 : Big Data Analytics

Teaching		Evaluation Scheme	
Scheme			
Lectures	3 Hrs/Week	ISE I	20 Marks
Tutorial	-	ISE II	20 Marks
Total Credits	3	ESE	60 Marks

Course Description: This course gives an overview of Big Data Analytics, i.e. storage, retrieval and processing of big data. In addition, it also focuses on the "technologies", i.e., the tools/algorithms that are available for storage, processing of Big Data. It also helps a student to perform a variety of "analytics" on different data sets and to arrive at positive conclusions.

Course Outcomes:

After successful completion the course, students will be able to:

	Course Outcomes
CO1	Applying Map Reduce paradigm to solve problems
CO2	Apply Hadoop ecosystem components for big Data use cases
CO3	Constructing a real world application to solve specific business problems using powerful analytic techniques.
CO4	Ability to initiate and design highly scalable systems that can accept, store, and analyze large volumes of unstructured data in batch mode and/or real time.
CO5	Analysis of data near real time data using tensorflow and graphs.

Detailed Syllabus:

Unit 1	Map-Reduce: MAPREDUCE PROGRAMMING: Introduction, Mapper,		
	Reducer, Combiner, Partitioner, Searching, Sorting, Compression, Real time		
	applications using MapReduce, Data serialization and Working with common		
	serialization formats, Big data serialization formats. Evolution of Hadoop and		
	Map/Reduce, semi-structured data: web logs, videos, speech recordings,		
	photographs, e-mails, Tweets, and similar data.		
Unit 2	Spark Framework Introduction to GPU Computing, CUDA Programming		
	Model, CUDA API, Simple Matrix, Multiplication in CUDA, CUDA Memory		
	Model, Shared Memory Matrix Multiplication, Additional CUDA API		
	Features. Data Analysis with Spark Shell, Writing Spark Application - Spark		
	Programming in Scala, Python, R, Java - Application Execution		

An-

BAN

Approved in XXV IIIth Academic Council Dated: 25th Jun 2024

Unit 3	NoSQL storage solutions: Cassandra for their critical features: speed of reads and writes, ability to scale to extreme volumes. SQL Context Importing and Saving data Data frames using SQL
Unit 4	Memory-resident and graph databases: GraphX overview – Creating Graph, Graph Algorithms. Spark GraphX ,
Unit 5	Tensor Flow: Regression, Clustering, and Classification.

Text and Reference Books:

- Boris lublinsky, Kevin t. Smith, Alexey Yakubovich, "Professional Hadoop Solutions", Wiley, ISBN: 9788126551071, 2015.
- 2. Chris Eaton, Dirk deroos et al., "Understanding Big data", McGraw Hill, 2012.
- 3. Learning Real-time Processing with Spark Streaming , Sumit Gupta.
- 4. Cassandra: The Definitive Guide: , EbenHewitt,O,Reilly publications
- 5. TensorFlow for Deep LearningFrom Linear Regression to Reinforcement Learning, Reza Zadeh, BharathRamsundar, O'Reilly Media.
- 6. Graph Databases: New Opportunities for Connected Data, Ian Robinson (Author), Jim Webber (Author), Emil Eifrem (Author).

Mapping of Course outcomes with Program Outcomes and Program Specific Outcomes:

	Program Outcomes					
Course outcome	РО 1	PO 2	PO 3	РО 4	PO 5	
CO1	3	1	2			
CO2	2	1	2		3	
CO3	3	1	3	3	3	
CO4	3	1	2	3	3	
CO5	2	1	2	3	3	

3 - High 2 – Medium 1 – Low

Assessment:

ISE I : In semester evaluations (ISE I) of 20 marks, each will be based on Class Test I.

ISE II: Teachers Assessment of 20 marks is based on one of the / or combination of few of the following:

- 1. Quiz
- 2. Assignments
- 3. Question and answer
- 4. PowerPoint presentation

Assessment Pattern:

Assessment Pattern Level No.	Knowledge Level	ISE I	ISE II	End Semester Examination	
K1	Remember	10	00	15	
K2	Understand	10	00	20	\år

K3	Apply	00	10	15
K4	Analyze	00	10	10
K5	Evaluate	00	00	00
K6	Create	00	00	00
Total Marks 100		20	20	60

Assessment table:

Assessment Tool	K1, K2	K3
	CO1,CO2	CO3, CO4,CO5
ISE I (20 Marks)	20	00
ISE II (20 Marks)	00	20
ESE Assessment (60 Marks)	35	25
Total Marks 100	55	45

Special Instructions if any: Nil

CSPEC5011: High Performance Computing

Teaching		Evaluation Scheme	
Scheme			
Lectures	3 Hrs/Week	ISE I	20 Marks
Tutorial	-	ISE II	20 Marks
Total Credits	3	ESE	60 Marks

Course Description: High Performance Computing is a course on High Performance Computing Clusters providing a solid foundation in parallel computer architectures, parallel programming models. This course will discuss fundamentals of grid computing systems covering topics ranging from what an HPC cluster consists of to how to efficiently solve complex large scale problems in various the areas like cloud computing.

Course Outcomes:

After successful completion the course, students will be able to:

	Course Outcomes
CO1	To Study memory hierarchies, processor types and techniques in high performance
	computing
CO2	To understand the Designing of high performance computing.
CO3	To Study different platforms involved in achieving high performance computing
CO4	To develop efficient and high performance programming
CO5	Apply different computing models learned in the High Performance Computing system

Detailed Syllabus:

Unit 1	Overview of Grid Computing Technology, History of Grid Computing,
	High Performance Computing, Cluster Computing. Peer-to-Peer
	Computing, Internet Computing, Grid Computing Model and Protocols,
	Types of Grids: Desktop Grids, Cluster Grids, Data Grids, High-
	Performance Grids, Applications and Architectures of High Derformance

	Grids, High Performance Application Development Environment.
Unit 2	Open Grid Services Architecture, Introduction, Requirements, Capabilities,
	Security Considerations, GLOBUS Toolkit.
Unit 3	Overview of Cluster Computing, Cluster Computer and its Architecture,
	Clusters Classifications, Components for Clusters, Cluster Middleware and
	SSI, Resource Management and Scheduling, Programming, Environments
	and Tools, Cluster Applications, Cluster Systems,
Unit 4	Beowulf Cluster: The Beowulf Model, Application Domains, Beowulf
	System Architecture, Software Practices, Parallel Programming with MPL,
	Parallel Virtual Machine (PVM).
Unit 5	Overview of Cloud Computing, Types of Cloud, Cyber infrastructure,
	Service Oriented Architecture Cloud Computing Components:
	Infrastructure, Storage, Platform, Application, Services, Clients, Cloud
	Computing Architecture.

Text and Reference Books:

1. Ahmar Abbas, "Grid Computing: Practical Guide to Technology & Applications", Firewall Media, 2004.

- 2. Joshy Joseph and Craig Fellenstein, "Grid Computing" Pearson Education, 2004.
- 3. lan Foster, et al., "The Open Grid Services Architecture", Version 1.5 (GFD.80). Open Grid Forum, 2006. (available at http://www.ogf.org)

4.Ian Foster. *Globus Tool kit Version 4: Software for Service-Oriented Systems*. IFIP International Conference on Network and Parallel Computing, Springer-Verlag LNCS 3779, pp 2-

13,2006. (available athttp://www.globus.org/)

5.Rajkumar Buyya. High Performance Cluster Computing: Architectures and Systems. Prentice-Hall India, 1999.

Mapping of Course outcomes with Program Outcomes and Program Specific Outcomes:

	Program Outcomes					
Course outcome	PO1	PO2	PO3	PO4	PO5	
CO1	3	1	2			
CO2	3	1	3			
CO3	2	1	2	2		
CO4	3	1	2	3	2	
CO5	3	1	3	3	3	

3 - High 2 – Medium 1 – Low

Assessment:

ISE I: In semester evaluations (ISE I) of 20 marks, each will be based on Class Test

ISE II: Teachers Assessment of 20 marks is based on one of the / or combination of few of the following:

- 1. Quiz
- 2. Assignments
- 3. Question and answer

4. PowerPoint presentation

Assessment	Pattern:

Assessment Pattern Level No.	Knowledge Level	ISE I	ISE II	End Semester Examination
K1	Remember	05	00	12
K2	Understand	10	10	12
К3	Apply	05	10	12
K4	Analyze	00	00	12
K5	Evaluate	00	00	12
K6	Create	00	00	00
Total Marks 100		20	20	60

Assessment table:

Assessment Tool	K1, K2	K3,K4,K5
	CO1,CO2	CO3, CO4,CO5
ISE I (20 Marks)	10	10
ISE II (20 Marks)	10	10
ESE Assessment (60 Marks)	24	36
Total Marks 100	44	56

Special Instructions if any: Nil

CSPEC5012: Wireless Sensor Network

		Evaluation Scheme	
Teaching			
Scheme			
Lectures	3 Hrs/Week	ISE I	20 Marks
Tutorial	-	ISE II	20 Marks
Total Credits	3	ESE	60 Marks

Course Description: To understand the fundamentals of wireless sensor networks and its application to critical real time scenarios. To study the various protocols at various layers and its differences with traditional protocols.

Course Outcomes:

After successful completion the course, students will be able to:

	Course Outcomes	
CO1	To provide awareness about challenges wireless sensor networks.	
CO2	To acquire knowledge of various networking sensors	
	Vir	BAris

Approved in XXV IIIth Academic Council Dated: 25* Jun 2024

CO3	To comprehend the infrastructure establishment
CO4	To discuss sensor network platforms and tools.

Detailed Syllabus:

Unit 1	Overview of wireless sensor networks: Challenges for Wireless Sensor Networks, Enabling Technologies for Wireless Sensor Networks.
Unit 2	Architectures: Single-Node Architecture - Hardware Components, Energy Consumption of Sensor Nodes , Operating Systems and Execution Environments, Network Architecture - Sensor Network Scenarios
Unit 3	Networking sensors: Physical Layer and Transceiver Design Considerations, MAC Protocols for Wireless Sensor Networks, Low Duty Cycle Protocols And Wakeup Concepts - S-MAC.
Unit 4	Infrastructure Establishment: Topology Control, Clustering, Time Synchronization, Localization and Positioning, Sensor Tasking and Control.
Unit 5	Sensor network platform and tools: Node Hardware – Berkeley Motes, Programming Challenges, Node-level software platforms

Text and Reference Books:

1. Holger Karl & Andreas Willig, "Protocols And Architectures for Wireless Sensor Networks", John Wiley, 2005. REFERENCE BOOK:

2. Feng Zhao & Leonidas J. Guibas, "Wireless Sensor Networks- An Information Processing Approach", Elsevier, 2007.

Mapping of Course outcomes with Program Outcomes and Program Specific Outcomes:

	Program Outcomes					
Course outcome	РО 1	PO 2	PO 3	PO 4	PO 5	
CO1	3	1	2			
CO2	3	1	2	2	2	
CO3	2	1	2			
CO4	2	1	2		2	

3 - High 2 – Medium 1 – Low

Assessment:

ISE I : In semester evaluations (ISE I) of 20 marks, each will be based on Class Test I.

ISE II: Teachers Assessment of 20 marks is based on one of the / or combination of few of the following:

- 1. Quiz
- 2. Assignments
- 3. Question and answer
- 4. PowerPoint presentation

Assessment Pattern:

RA Approved in XXV IIIth Academic Council Dated: 25th Jun 2024

Assessment Pattern	Knowledge	ISE	ISE	End Semester
Level No.	Level	Ι	II	Examination
K1	Remember	10	00	15
K2	Understand	05	10	15
K3	Apply	05	10	15
K4	Analyze	00	00	15
K5	Evaluate	00	00	00
K6	Create	00	00	00
Total Marks 100		20	20	60

Assessment table:

Assessment Tool	K1, K2	K3,K4, K5
	CO1,CO2	CO3, CO4
ISE I (20 Marks)	15	05
ISE II (20 Marks)	10	10
ESE Assessment (60 Marks)	30	30
Total Marks 100	55	45

Special Instructions if any: Nil

CSOEC5002: Professional Ethics and Cyber Laws (OPEN ELECTIVE I)

Teaching		Evaluation Scheme	
Scheme			
Lectures	3 Hrs/Week	ISE I	20 Marks
Tutorial	-	ISE II	20 Marks
Total Credits	3	ESE	60 Marks

Course Description: This course will introduce concepts of Professional and Philosophical Ethics amongst the students; it will summarise Cyber Crimes and its associated investigation and forensics with relation to Cyber law. Students will have a new dimension to look towards their day to day computer activities.

BAril

Course Outcome:

CO1	Apply Philosophical and Professional Ethics to solve Ethical Dilemma & identify their Professional Responsibilities.	
CO2	Study Intellectual Property Rights in Cyberspace.	Bhi
-	Арргом	ed in XXV IIIth Academic Council Dated: 25 th Jun 2024

CO3	Summa	rize Cyber Forensics and its role in Cyber Laws	
CO4	Evaluat	e Cyber Crimes and its severity, and measures for Incident detection and response.	
CO5	Describ	e Scope, jurisdiction, offence and contraventions, powers of police, adjudication.	
Detailed	l Syllabı	18:	
UNIT 1		Computer and Philosophical ethics: Moral v/s Ethics, Why Computer Ethics, Philosophical Ethics: Distinguishing Descriptive and Normative Claims, Ethical Relativism, Utilitarianism, Deontological Theories, Rights, Virtue Ethics, Professional Ethics: Why Professional Ethics, Characteristics of Professionals, The System of Professionals, is Computing a Profession, Professional Relationships, Code of Ethics and Professional Conduct, Steps in Ethical Decision Making.	
UNIT 2		Ethics & Internet: Three Morally Significant Characteristics, Hacking & Hacker Ethics, Netiquette Intellectual property issues in cyberspace : Introduction to intellectual property Protections via Trade Secrets, Trademarks, Patents, Etc.Contracting to protect intellectual property, Protection options - Encryption / PGP, copyright on web-content, Copyright on software, digital contracts, digital signatures.	
UNIT 3		Data and Evidence Recovery: Introduction to Deleted File Recovery, Formatted Partition Recovery, Data Recovery Tools, Data Recovery Procedures and Ethics, Preserve and safely handle original media, Document a "Chain of Custody", Complete time line analysis of computer files based on file creation, file modification and file access, Recover Internet Usage Data, Recover Swap Files/Temporary Files/Cache Files, Introduction to Encase Forensic Edition, Forensic Tool Kit (FTK) etc, Use computer forensics software tools to cross validate findings in computer evidence-related cases.	
		Cyber Forensics Investigation : Introduction to Cyber Forensic Investigation, Investigation Tools, eDiscovery, Digital Evidence Collection, Evidence Preservation, EMail Investigation, E-Mail Tracking, IP Tracking, EMail Recovery, Encryption and Decryption methods, Search and Seizure of Computers, Recovering deleted evidences, Password Cracking.	
UNIT 4		Cyber Security: Introduction to Cyber Security, Implementing Hardware Based Security, Software Based Firewalls, Security Standards, Assessing Threat Levels, Types of incidents, Stages of incident response Threats in cyberspace, Blended Attacks, incident prevention and detection, Forming an Incident Response Team, Reporting Cyber crime, Operating System Attacks, Application Attacks, Reverse Engineering & Cracking Techniques and Financial Frauds.	
UNIT 5		Information technology Act 2000 : Scope, jurisdiction, offence and contraventions, powers of police, adjudication.	
Text an	d Refe	rence Books:	
2.	 Computers, Ethics, And Social Values, Johnson and Nissenbaum, 1994 Prentice Hall Cyber security operations Handbook, John Rittinghouse, William Hancock Computer ethics, Deborah G.Johnson, third edition, Pearson education 		

Mapping of Course outcomes with Program Outcomes and Program Specific (

BAril

	Program Outcomes				
Course outcome	PO 1	PO 2	PO 3	PO 4	PO 5
CO1	2	1	2		
CO2	3	1	3		
CO3	2	1	3	1	
CO4	3	1	2	2	2
CO5	3	1	3		

3 - High 2 – Medium 1 – Low

Assessment:

ISE I: In semester evaluations (ISE I) of 20 marks, each will be based on Class Test.

ISE II: Teachers Assessment of 20 marks is based on one of the / or combination of few of the following:

- 1. Quiz
- 2. Assignments
- 3. Question and answer
- 4. PowerPoint presentation

Assessment Pattern:

Assessment Pattern Level	Knowledge	ISE	ISE	End Semester
No.	Level	Ι	Π	Examination
K1	Remember	05	00	12
K2	Understand	10	10	12
K3	Apply	05	10	12
K4	Analyze	00	00	12
K5	Evaluate	00	00	12
K6	Create	00	00	00
Total Marks 100		20	20	60

Assessment table:

Assessment Tool	K1, K2	K3,K4,K5
	CO1,CO2	CO3, CO4,CO5
ISE I (20 Marks)	20	00
ISE II (20 Marks)	00	20
ESE Assessment (60 Marks)	24	36
Total Marks 100	44	56

Special Instructions if any: Nil

Teaching Scheme		Evaluation Sch	Evaluation Scheme		
Total Credits	2	ISE II	25 Marks		
		ESE	25 Marks		

After completing the course students will able to

	Course Outcomes
CO1	Illustrate industrial project / in-house project
CO2	Identify industrial problems / in-house
CO3	Integrate and apply the knowledge gained through different courses into practical
	problems
CO4	Prepare a consolidated report

Detailed description:

- 1. Student shall identify and collect pragmatic industrial information / in-house project / social problem as a Mini Project II.
- 2. Student shall obtain a solution by applying suitable techniques.
- 3. Student has to exhibit the continuous progress review through regular reporting and presentations. The candidate shall submit the report on Mini Project II in standard format for satisfactory completion of the work, duly approved and certified by the concerned guide, Head of the Department and Principal.
- 4. The candidate will be assessed during ESE by two examiners, one of whom will be the guide and other is necessarily an external examiner appointed by the BoS / Head of Department / BoS Chairman. The assessment will be broadly based on work undergone, content delivery, presentation skills, documentation and report.
- 5. For standardization and documentation, it is recommended to follow the formats and guidelines approved by the Board of Studies.

Assessment:

ISE II- Continuous Assessment of individual student Maximum Marks-25 ESE – Viva Voce based on presentation and report. Maximum Marks-25

Assessment Pattern:

Assessment Pattern Level No.	Knowledge Level	ISE II	ESE
S1	Implementation	04	04
S2	Manipulation	03	03
S3	Precision	14	14
S4	Articulation	04	04
S5	Naturalization	00	00
Total Marks		25	25

Knowledge Level	ISE II	ESE
Preparation S1	04	04
Articulation of problem S4	04	04
Observation S3	08	08
Record S2	03	03
Mini project/ Presentation/Viva Voce S3	06	06
Total Marks	25	25

Approved in XXV IIIth Academic Council Dated: 25th Jun 2024

	Outcomes	PO1	PO2	PO3	PO4	PO5
	CO1	3		3	3	3
	CO2	3	1	3	3	1
	CO3	3	1	3	3	3
	CO4	2	3		3	3
1 - Low, 2 - Medium, 3	– High					

EEAEC5001: Technical Communication (Humanities I)

Teaching Scheme		Evaluation Scheme	
Lectures	3 Hrs/Week	ISE I	20 Marks
Total Credits	3	ISE II	20 Marks
		ESE	60 Marks

Course Outcomes (COs):

Dated: 25th Jun 2024

At the end of the course, the student will be able to

CO1	Understand the nature and objective of Technical Communication relevant for the
	work placeas Engineers.
CO2	Utilize the technical writing for the purposes of Technical Communication and its
	exposure invarious dimensions
CO3	Enhance confidence in face of diverse audience.
CO4	Evaluate their efficacy as fluent & efficient communicators by learning the voice-
	dynamics.

Detailed Syllabus:

UNIT -1 Fundamentals of Technical Communication: Technical Communication: Features; Distinction between General and Technical Communication; Language as a tool of Communication; Dimensions of Communication: Reading & comprehension; Technical writing: sentences; Paragraph; Technical style: Definition, types & Methods; The flow of Communication: Downward; upward, Lateral or Horizontal; Barriers to Communication. UNIT -2 Forms of Technical Communication: Technical Report: Definition & importance; Thesis/Project writing: structure & importance; synopsis writing: Methods; Technical research Paper writing: Methods & style; Seminar & Conference paper writing; Key-Note Speech: Introduction & Summarization; Expert Technical Lecture: Theme clarity; Analysis & Findings; 7 Cs of effective business writing: concreteness, completeness, clarity, conciseness, courtesy, correctness, consideration. Approved in XXV IIIth Academic Council

UNIT -3	Technical Presentation: Strategies & Techniques Presentation: Forms;				
01111 0	interpersonal Communication; Classroom presentation; style; method;				
	1				
	Individual conferencing: essentials: Public Speaking: method; Techniques:				
	Clarity of substance; emotion; Humour; Modes of Presentation; Overcoming				
	Stage Fear: Confident speaking; Audience Analysis & retention of audience				
	interest; Methods of Presentation: Interpersonal; Impersonal; Audience				
	Participation: Quizzes & Interjections.				
UNIT -4	Technical Communication Skills: Interview skills; Group Discussion:				
	Objective & Method; Seminar/Conferences Presentation skills: Focus;				
	Content; Style; Argumentation skills: Devices: Analysis; Cohesion &				
	Emphasis; Critical thinking; Nuances: Exposition narration & Description;				
	effective business communication competence: Grammatical; Discourse				
	competence: combination of expression & conclusion; Socio-linguistic				
	competence: Strategic competence: Solution of communication problems				
	with verbal and				
	non verbal means.				
UNIT -5	Kinesics & Voice Dynamics: Kinesics: Definitions; importance; Features of				
	Body Language; Voice Modulation: Quality, Pitch; Rhythm; intonation;				
	Pronunciation; Articulation; stress & accent; Linguistic features of voice				
	control: Vowel & Consonant Sounds.				

Text And Reference Books:

1. Technical Communication – Principles and Practices by Meenakshi Raman & Sangeeta Sharma, Oxford Univ. Press, 2007, New Delhi.

2. Business Correspondence and Report Writing by Prof. R.C. Sharma & Krishna Mohan, Tata McGrawHill & Co. Ltd., 2001, New Delhi.

3. Practical Communication: Process and Practice by L.U.B. Pandey; A.I.T.B.S. Publications India Ltd.;Krishna Nagar, 2014, Delhi.

4. Modern Technical Writing by Sherman, Theodore A (et.al); Apprentice Hall; New Jersey; U.S.

5. A Text Book of Scientific and Technical Writing by S.D. Sharma; Vikas Publication, Delhi.

6. Skills for Effective Business Communication by Michael Murphy, Harward University, U.S.

7. Business Communication for Managers by Payal Mehra, Pearson Publication, Delhi.

Assessment: ISEI (Class Test), ISEII (TA) & ESE

Teacher Assessment:: Students will perform one or more of the following activities

- 1. Surprise Test
- 2. Assignment
- 3. Quiz
- 4. Any other activity suggested by course coordinator

Approved in XXV IIIth Academic Council Dated: 25th Jun 2024

Semester III

CSOEC6002 :Data Science

Teaching		Evaluation Scheme	
Scheme			
Lectures	3 Hrs/Week	ISE I	20 Marks
Tutorial	-	ISE II	20 Marks
Total Credits	3	ESE	60 Marks

Course Description: Identify and explain fundamental ingredients that constitute a Data collection and management. Describe what data science is and the skill sets needed to be a data scientist.

Course Outcomes:

After successful completion the course, students will be able to:

	Course Outcomes
CO1	Explain how data is collected, managed and stored for data science
CO2	Understand the key concepts in data science, including their real-world applications and the toolkit used by data scientists
CO3	Implement data collection and management scripts using MongoDB
CO4	To understand the mathematical foundations required
CO5	To evaluate data science frameworks with a practical case study.

Detailed Syllabus:

Unit 1	Introduction to core concepts and technologies: Introduction, Terminology, data
Unit 2	Data collection and management: Introduction, Sources of data, Data collection and APIs, Exploring and fixing data, Data storage and management, Using multiple data sources
Unit 3	Data analysis: Introduction, Terminology and concepts, Introduction to statistics, Central tendencies and distributions, Variance, Distribution properties and arithmetic, Samples/CLT, Basic machine learning algorithms, Linear regression, SVM, Naive Bayes.
Unit 4	Data Visualisation Using Matoplotlib & Seaborn libraries : Scatter plot, line plot, bar plot, histogram, box plot, pie chart, pair plot
	Approved in XXV IIIth Academic Co Dated: 25th Jun 2024

Unit 5	Case Study
	Regression and Classification (use of any case study using a dataset)
	Regression datasets - Crime_in_india, Salary_Classification, Income_Data,
	Classification Datasets - Shopping_Mall,Social_Network_Ads

Text and Reference Books:

1. Cathy O'Neil and Rachel Schutt. Doing Data Science, Straight Talk From The Frontline. O'Reilly.

2. Jure Leskovek, Anand Rajaraman and Jeffrey Ullman. Mining of Massive Datasets. v2.1, Cambridge University Press.

3. Mastering Python for data science, Samir Madhavan

4. Introduction to linear algebra - by Gilbert Strang

Mapping of Course outcomes with Program Outcomes and Program Specific Outcomes:

	Program Outcomes					
Course outcome	PO 1	PO 2	PO 3	PO 4	PO 5	
CO1	3	1	2			
CO2	3	1	2	2	3	
CO3	2	1	2	2	3	
CO4	3	1	2			
CO5	3	1	2	3	3	

3 - High 2 – Medium 1 – Low

Assessment:

ISE I: In semester evaluations (ISE I) of 20 marks, each will be based on Class Test.

ISE II: Teachers Assessment of 20 marks is based on one of the / or combination of few of the following:

- 1. Quiz
- 2. Assignments
- 3. Question and answer
- 4. PowerPoint presentation

Assessment Pattern:

Assessment Pattern Level No.	Knowledge Level	ISE I	ISE II	End Semester Examination
K1	Remember	05	00	12
K2	Understand	10	10	12
K3	Apply	05	10	12
K4	Analyze	00	00	12
K5	Evaluate	00	00	12
Кб	Create	00	00	00
Total Marks 100		20	20	60

Assessment table:

Assessment Tool	K1, K2	K3,K4,K5
	CO1,CO2	CO3, CO4,CO5

BAN Approved in XXV IIIth Academic Council Dated: 25th Jun 2024

ISE I (20 Marks)	10	10
ISE II (20 Marks)	10	10
ESE Assessment (60 Marks)	24	36
Total Marks 100	44	56

Special Instructions if any: Nil

MEEEM6001: Entrepreneurship Development (Humanities II)

Teaching Scheme		Evaluation Scheme	
Lectures	3 Hrs/Week	ISE I	20 Marks
Total Credits	3	ISE II	20 Marks
		ESE	60 Marks

Course Objectives:

- 1. Interpreting information about support systems, skill sets, financial and risk covering institutions and other for building an enterprise so that budding entrepreneurs can make right decisions for starting and running a venture.
- 2. Articulating the entrepreneurial process of creating new businesses, role of Creativity and innovation in Entrepreneurial start-ups
- 3. Preparing a context of social innovation and social entrepreneurship and issues and practices of financing entrepreneurial businesses., and live cases of social, techno, women entrepreneurs

Course Outcomes:

After completing the course students will able to

CO1	Articulate the value proposition of an Entrepreneurial venture.
CO2	Evaluate a business plan to determine if it is complete and of investment grade;
CO3	Demonstrate key entrepreneurial leadership qualities
CO4	Determine the competitiveness of their business versus direct competitors by creating a
	competitive matrix

Detailed Syllabus:

UNIT -1	Introduction to Entrepreneurship. Business ideas, Development of a Business plan
UNIT -2	Establishing a small-scale enterprise, Functional strategies for new business, Overview of financial markets – Meaning and scope
UNIT -3	Social entrepreneurship, Sustainability of non-profit organizations, Financing and risks in social enterprises, Business Strategies and Scaling up

Approved in XXV IIIth Academic Council BAN

UNIT -4	Entrepreneurial Management, managing growth, expansion and winding up of						
	business, Valuation of a new company, corporate entrepreneurship, Entrepreneurship in						
	the era of Globalization: Environment and Strategy						
UNIT-5	Entrepreneurship, Creativity and Innovation, Centre of Innovation, Incubation and						
	Entrepreneurship- An expert Interview, Entrepreneurship: Role of stimulating						
	creativity, Creative teams and managerial responsibilities, Innovation and						
	entrepreneurship: types and sources of innovation, Creativity and Innovations in Start						
	Ups, Start-up Case Studies						

TEXT AND REFERENCE BOOKS

- 1. Eric Ries, "The Lean Startup" Crown Business, USA
- 2. Alexander Osterwalder and Yves Pigneur, "Business Model Generation" Pigneur Publications
- 3. Bill Aulet, "Disciplined Entrepreneurship: 24 Steps to a Successful Startup", 1st edition, Wiley
- 4. Steve Blank and Bob Dorf, "The Startup Owner's Manual: The Step-by-Step Guide for Building a Great Company", Strategyser Publishing
- 5. Bruce R. Barringer and R. Duane Ireland, "Entrepreneurship: Successfully Launching NewVentures", Pearson Global Edition

Assessment: ISE I (Class Test), ISE II (TA) & ESE

Teacher Assessment: Students will perform one or more of the following activities

- 1. Surprise Test
- 2. Assignment
- 3. Quiz
- 4. Any other activity suggested by course coordinator

Mapping of Course Outcomes with Program Outcomes:

Outcomes	PO1	PO2	PO3	PO4	PO5
CO1	2	2	1	2	
CO2	1	2	2		3
CO3	1	3	2	2	3
CO4	1		1		

1 – Low, 2 – Medium, 3 – High

ECEEM6002: Engineering Economics (Humanities II)

Teaching Scheme		Evaluation Scheme	
Lectures	3 Hrs/Week	ISE I	20 Marks
Total Credits	3	ISE II	20 Marks
		ESE	60 Marks

Objectives:

- To built up the knowledge of managerial economics and analysis of project considering economical concepts.
- Expertise in costing, finance and accounting related to the organization. Able to do corporate planning

Course Outcome:

After completing the course, students will able to:

CO1	Implement the knowledge of economics for costing, finance and accounting of
	engineering problems
CO2	Execute economic analysis of Analyze engineering projects.
CO3	Understand financial analysis of engineering projects and prepare project report.
CO4	Understand various aspects of corporate planning

Detailed Syllabus:

UNIT-1	Engineering Economics and estimation: The principle and use of economic analysis in engineering practice. Discounted cash flow analysis, corporate tax and investment, Depreciation and economic studies, replacement analysis, valuation of assets. Estimating: Importance and aim, objectives, functions, Estimating Procedure, Constituents of Estimation. Concept of direct tax, indirect tax as GST.
UNIT -2	 Depreciation & break even analysis: Introduction, purpose, methods for calculating depreciation-straight line method, Diminishing balance method, sum of year digit method, machine hour basis method. Break even analysis: Introduction, assumptions in break even analysis, important terms and definitions, calculation of breakeven point, advantages and limitations.
	Economic analysis of projects: analysis of risks and uncertainty, elements of demand
UNIT-3	analysis of projects: analysis of risks and uncertainty, elements of demand analysis and forecasting, production function, output and pricing decisions Labor costing: Introduction, factors influencing wage rate, methods of wage payments for direct and indirect labor-time wage system, Wage incentives: different plans, labor, indirect expenses

Approved in XXV IIIth Academic Council Dated: 25th Jun 2024 BArel

UNIT -5	Corporate Planning: Corporate objectives, goals and policies, process of
UNII -5	corporate planning, SWOT analysis, GAP analysis, strategy formulation,
	investment evaluation, capital budgeting, industrial dynamics, Business case
	development.

REFERENCE BOOKS:

- 1. Owler W., Brown J. L., "Cost Accounting and Cost Methods", 14thEd., McDonald and Evans Publications
- 2. 2.Kuchal S. C., Financial Management An Analytical and Conceptual Approach", 10thEd., Chaitanya Publishing House
- 3. Shukla M. S. and Grewal T. S., "Advance Accounts", S. Chand and Co., New Delhi
- 4. Mechanical Estimating and Costing By B.P. Sinha. Tata McGraw Hill Publishing Co. Ltd. N. Delhi
- 5. Mechanical Estimating and Costing T.R. Banga and S.C.Sharma, Khanna Publishers Delhi
- 6. Industrial Engineering & Operations management by S.K.Sharma&SavitaSharma,Kataria publishers
- 7. Process Planning & Cost Estimation by R. Kesoram& others, New Age International Pub., N. Delhi
- 8. Handbook of Engineering Management- Edited by Dennis Lock Butterwork & Heinemanky Ltd
- 9. Theusan and Theusan, "Engineering Economics", 5 Ed., PHI, New Delhi
- 10. Dean Joel, "Managerial Economics", PHI, New Delhi
- 11. Hussey D. D., "Introducing Corporate Planning", Pergamon Press, New York, 1982

Assessment: ISE I (Class Test), ISE II (TA) & ESE

Teacher Assessment:: Students will perform one or more of the following activities

- 1. Surprise Test
- 2. Assignment
- 3. Quiz
- 4. Any other activity suggested by course coordinator

MEEEM6003: Industrial Management (Humanities II)

Teaching Scheme		Evaluation Scheme	
Lectures	3 Hrs/Week	ISE I	20 Marks
Total Credits	3	ISE II	20 Marks
		ESE	60 Marks

Course Objectives:

- 1. Provide an overview of the principles, concepts, and importance of industrial management in modern business environments.
- 2. Examine techniques for maintaining and improving product and service quality.
- 3. Develop skills in formulating and implementing strategic plans for industrial organizations to achieve long-term objectives and stay competitive in the market.
- 4. Provide an overview of the role and importance of Management Information Systems in modern organizations, including their impact on decision-making, efficiency, and competitive advantage.
- 5. Introduce students to the fundamental concepts, theories, and models that underlie human resource development, including adult learning principles, organizational development, talent management, and performance improvement.

Course Outcomes:

After completing the course students will able to

completing the course students will use to
Understanding of fundamental concepts and theories related to industrial management.
Acquire the ability to analyze complex industrial challenges
Evaluate methodologies to ensure consistent product quality and process improvement.
Examining human resources in various industrial setting
Formulate and implement strategic plans that align with organizational goals and adapt
to changing market dynamics.

Detailed Syllabus:

UNIT-1	Basics of Management: Introduction, Definition of management, characteristics of				
	management, functions of management - Planning, Organizing, Staffing, Directing,				
	Co-ordination, Controlling, Motivating, Communication, Decision Making,				
	Principles of management – F.W.Taylor, Henry Fayol, Elton Mayo, Administration				
	and management, Nature of management, levels of management, managerial skills,				
	managerial roles, Forms of Organization- Line, Line –staff etc. Forms of ownerships				
	- Partnership, Proprietorship, Joint stock, Co-operative society, Govt. Sector etc.,				
	concept of Globalization				
UNIT -2	Quality Management: Definition of quality, goalpost view of quality, continuous				
	improvement definition of quality, types of quality – quality of design, conformance				
	and performance, phases of quality management, Juran's and Demings view of				
	quality, Quality Management Assistance Tools: Ishikawa diagram – Pareto Analysis –				
	Pokka Yoke (Mistake Proofing).quality circles, TQM, Kaizen, Five S (5S), Six sigma				
	Quality Management Standards (Introductory aspects only)- The ISO 9001:2000				
	Quality Management System Standard- The ISO 14001:2004 Environmental				
	Management				
	System Standard- ISO 27001:2005 Information Security Management System.				
UNIT -3	Strategic Management: Military origins of strategy Evolution - Concept and				
	Characteristics of strategic management –Defining strategy – Mint berg's 5P's of				
	strategy - Corporate, Business and Functional Levels of strategy - Strategic				
	Management Process.				

m. RAN Approved in XXV IIIth Academic Council Dated: 25th Jun 2024

UNIT-4	Management Information Systems: Concept of data and information, characteristics				
	of information, types of information, Definition of MIS, Need, Purpose and Objectives,				
	Contemporary Approaches to MIS, Components of an information system, need to				
	study information systems, Classification of information systems, Decision-making				
	models, Types of decisions, Decision 3 Support Systems				
UNIT -5	Human Resource Development (HRM): Objectives of HRM; challenges to HR				
	professionals; role, Responsibilities and competencies of HR professionals; HR				
	department operations; Human Resource Planning - objectives and process; human				
	resource information system. Talent acquisition; recruitment and selection strategies,				
	career planning and management, training and development, investment in training				
	Programme; executive development.				

TEXT AND REFERENCE BOOKS

- 1. O. P. Khanna, "Industrial Engineering and Management", Dhanpat Rai, Rai publicationsLtd, New Delhi.
- 2. L. C. Jhamb, Savitri Jhamb, Industrial Management I, Everest Publishing House.
- 3. Dinesh Seth and Subhash C. Rastogi, "Global Management Solutions", Cengage Learning, Second Edition, USA.
- 4. B. Davis and Margrethe H. Olson, "Management Information Systems", Mc-Graw-Hill International Editions.
- 5. Azar Kazmi, "Strategic Management & Business Policy", Tata McGraw Hill, New Delhi
- 6. Kenneth C. Laudon and Jane P. Laudon, ""Management Information Systems", Eighth Edition, Pearson Education
- 7. K. Shridhara Bhatt, "Materials and Logistics Management", Himalaya Publishing House, Mumbai
- 8. M. Y. Khan and P. K. Jain, "Financial Management", Tata McGraw Hill, New Delhi
- 9. Ravi M. Kishore, "Project Management", Tata McGraw Hill

Assessment: ISEI (Class Test), ISEII (TA) & ESE

Teacher Assessment:: Students will perform one or more of the following activities

- 1. Surprise Test
- 2. Assignment
- 3. Quiz
- 4. Any other activity suggested by course coordinator

Outcomes	PO1	PO2	PO3	PO4	PO5
CO1		1	3	2	3
CO2	1	2	2	3	2
CO3	2	1	2	2	3
CO4	1		2	3	
CO5	1	2	3	2	

Mapping of Course Outcomes with Program Outcomes:

ECIKS6001 Vedic Approach to Mathematics		
Teaching: Scheme	Examination Scheme	
Lectures:02hrs/week	ISEI	10 Marks
Credits:2	ISEII	10Marks
	ESE	30 Marks

Course description: This course is planned as Ability enhancement course. It is an exposure to the Engineering students about vedic Mathematics. Vedic Mathematics is a collection of Techniques/Sutras to solve mathematical arithmetics in easy and faster way. It consists of 16 Sutras (Formulae) and 13 sub-sutras (Sub Formulae) which can be used for problems involved in arithmetic, algebra, geometry, calculus, conics. By using Vedic maths, the problems are solved mentally with the use of few or some of steps which increase accuracy and reduce mistakes. Through the application of the sutras, it ensures both speed and accuracy and enhances computational skills. In this course some of the topics from Vedic Mathematics are introduced which are use full to Engineering Students.

Course Objectives:

The main objectives of the course are:

- 1. Multiply two or three digits numbers.
- 2. Compute the division by two and three digit divisors.
- 3. Check the divisibility by two or three digit numbers without actual division.
- 4. Evaluate square, cubes, square roots and cube roots of larger numbers within no time.
- 5. To factorise the quadratic expressions of single variable.
- 6. To find the Solution of Linear Simultaneous Equations

Course Outcomes

After completing the course, students will be able to:

CO	1 D	o multiplication and division of two and three digit numbers by applying Sutras in Vedic
	Μ	lathematics
CO	2 To	o factorise and find LCM/HCF of numbers by applying Sutras in Vedic Mathematics
CO	3 To	o solve Simultaneous Linear Equations by applying Sutras in Vedic Mathematics

Detailed Syllabus:

Unit 1	Multiplication :
	1. Ekadhikenpurven method (multiplication of two numbers of two digits)
	2. Eknunenpurven method (multiplication of two numbers of three digits)
	3. Urdhvatiragbhyam method (multiplication of two numbers of three digits)
	4. Nikhilam Navtashchramam Dashtaha (multiplication of two numbers of three digits)
Unit 2	Division and Divisibility :
	Part A: Division
	1. Nikhilam Navtashchramam Dashtaha (two digits divisor)
	2. Paravartya Yojyet method (three digits divisor)
	Part B: Divisibility
	1. Ekadhikenpurven method (two digits divisor)
	2. Eknunenpurven method (two digits divisor)
Unit 3	Factorisation /LCM/HCF
Unit 4	Solution of Linear Simultaneous Equations :
	Simple equations, Simultaneous Simple Equations, Quadratic Equations, Cubic Equations,
	Simultaneous Quadratic Equations.

Approved in XXV IIIth Academic Council Dated: 25th Jun 2024

Unit 5 **Power and Root Power :**

(i) Square (two digit numbers), (ii) Cube (two digit numbers).
(iii) Square root (four digit number) (iv) Cube root (six digit numbers)

[Self Study and assignments]

Text and Reference Books

- 1. Vedic Mathematics, Jagadguru Swami Sri BHARATI KRSNA TIRTHAJI MAHARAJA, Motilal Banarsi Das Publishing House, New Delhi.
- 2. Vedic Ganita: Vihangama Drishti-1, Siksha Sanskriti Uthana Nyasa, New Delhi.
- 3. Vedic Ganita Praneta, Siksha Sanskriti Uthana Nyasa, New Delhi.
- 4. Vedic Mathematics: Past, Present and Future, Siksha Sanskriti Uthana Nyasa, New Delhi.
- 5. Leelavati, Chokhambba Vidya Bhavan, Varanasi.
- 6. Bharatiya Mathematicians, Sharda Sanskrit Sansthan, Varanasi

Assessment:

ISEI:	Shall be based on Class Tests/ Assignments/Quizzes/Presentations/ Course Projects
ISEII:	Shall be based on class test.

Mapping of Course outcome With Program Outcomes

1				1											
Course	PO	POI	POI	POI	PSO	PSO	PSO								
Outcome	Ι	2	3	4	5	6	7	8	9	0	Ι	2	Ι	2	3
COI															
CO2															
CO3															

Assessment Pattern

Assessment Pattern Level No.	Knowledge Level	ISE1	ISEII	ESE
Kl	Remember	05	05	10
K2	Understand	05	05	20
K3	Apply	-	-	-
K4	Analyze	-	-	-
KS	Evaluate	-	-	-
K6	Create	-	-	-
Total Mars 50		10	10	30

Assessment table

Assessment Tool	K2	K2	K2
	COl	CO2	CO3
ISE I (10Marks)	10	-	-
ISE II (10Marks)	-	10	-
ESE (30Marks)	10	10	10

Approved in XXV IIIth Academic Council Dated: 25th Jun 2024 BA

CSDIS6001: Dissertation I					
Teaching Scheme		Evaluation	Scheme		
Practical Hours	20 Hrs/Week	ISE II	100 Marks		
Total Credits	10	ESE	100 Marks		
		ESE	100 Marks		

Course Description:

The dissertation shall consist of a report on research work done by the candidate or a comprehensive and critical review of any recent development in the subject or detailed report of the project work consisting of a work related to computer science & engineering that the candidate has to execute. The dissertation will consist of two parts as dissertation – I and dissertation – II.

Course Objectives:

- 1. To acquaint with the process of undertaking literature survey/industrial visit and identifying the problem
- 2. Able to define precise problem
- 3. To specify objectives on the basis of problem statement
- 4. To identify the research methodology processes and its implementation.

Course Outcomes:

After completing the course students will able to

	Course Outcomes				
CO1	CO1 Identify a practical problem from industry or research problem				
CO2	Review literature to identify gaps and define objectives & scope of the work to				
	decide the problem definition				
CO3	Interpret the problem				

Detailed description:

- 1. Dissertation I is an integral part of the dissertation work. In this, the student shall complete the preliminary work of the dissertation which will consist of problem statement, literature review, scheme of implementation, Layout and Design of the Setup. The student is expected to complete the dissertation at least up to the design phase.
- 2. The candidate has to exhibit the continuous progress through regular reporting and presentations.
- 3. The candidates have to validate their work undertaken by submitting and/or publishing it at standard platforms conference and/or peer reviewed journal.
- 4. The candidate shall submit the report of dissertation I in standard format for satisfactory completion of the work, duly approved and certified by the concerned guide, Head of the Department and Principal.
- 5. The candidate will be assessed during ESE by two examiners, one of whom will be the guide and other is necessarily an external examiner appointed by the BoS / Head of Department / BoS Chairman. The assessment will be broadly based on literature study, work undergone, content delivery, presentation skills, documentation and report.
- 6. For standardization and documentation, it is recommended to follow the formats and guidelines approved by the Board of Studies.

Assessment:

ISE II- Continuous Assessment of individual student Maximum Marks-100 ESE – Viva Voce based on presentation and report Maximum Marks-100

Approved in XXV IIIth Acade mic Council Dated: 25th Jun 2024

Semester IV

CSDIS6002 Dissertation – II					
Teaching Scheme	Examination Scheme				
Practical:32Hrs. /Week	ISEII	150Marks			
Credit:16	ESE	150Marks			

Course Objectives:

- 1. To excel in progress review and follow schedule meticulously to meet the objectives of proposed work
- 2. To test the hypothesis rigorously before deployment of system
- 3. To validate the work undertaken
- 4. To consolidate the work as furnished report

Course Outcomes:

After completing the	course students	will able to
riter completing the	course students	will uole to

	Course Outcomes		
CO1	CO1 Implement suitable research methodology		
CO2	CO2 Carryout experimentation responsibly and ethically		
CO3	CO3 Evaluate data and evidence of work		
CO4			

Detailed description:

- 1. In Dissertation II, the student shall consolidate and complete the remaining part of the dissertation which will consist of selection of research methodology, installations, implementations, testing, results, measuring performance, discussions using data tables considered for the improvement with existing/known algorithms/systems, comparative analysis, characterization and validation of results and conclusions.
- 2. The candidate has to exhibit the continuous progress through regular reporting and presentations.
- 3. The investigations and findings need to be validated appropriately at standard platforms one at conference and other in peer reviewed journal.
- 4. The candidate shall submit the report of dissertation II in standard format for satisfactory completion of the work, duly approved and certified by the concerned guide, Head of the Department and Principal.
- 5. The candidate will be assessed during ESE by two examiners, one of whom will be the

RA

Approved in XXV IIIth Academic Council Dated: 25th Jun 2024 guide and other is necessarily an external examiner appointed by the BoS / Head of Department / BoS Chairman. The assessment will be broadly based on literature study, work undergone, results and conclusion, contribution, content delivery, presentation skills, documentation and report.

6. For standardization and documentation, it is recommended to follow the formats and guidelines approved by the Board of Studies.

Format for Dissertation Report:

- 1. The total No. of minimum pages shall not be less than 50.
- 2. Plagiarism check by standard and approved software is must, and certificate shall be enclosed with the report.
- 3. Three report copies, loosely bound, shall be submitted in the department, one for examiner, one for supervisor and one for department.
- 4. The report shall be both side print hard bound. A hardbound report shall be made after examination by completing the examiner and guide's expected correction, before that report must be loosely bound.
- 5. For standardization of the reports the following format shall be strictly followed.

Page size: A4 Top Margin: 1" Bottom Margin: 1" Left Margin: 1.5" Right Margin: 1.5" Para Text: Times New Roman 12-point font Line Spacing: 1.5 Lines Page Numbers: Right aligned at footer. Font 10-point Times New Roman Headings: 14-Points, Times New Roman, Boldface.

Index of Report

- 1. Title Sheet
- 2. Certificate (Institution)as per standard format. Certificate shall have signatures of Guide, External Examiner, HoD and Principal.
- 3. Certificate (Company, if sponsored by company)
- 4. Undertaking by candidate as per standard format
- 5. Acknowledgement
- 6. Table of Contents
- 7. List of abbreviations
- 8. List of Figures
- 9. List of Photographs / Plates
- 10. List of Tables
- 11. Abstract of the Dissertation
- 12. Introduction
- 13. Literature Survey / Theory
- 14. Design / Experimentation / Fabrication / Production / Actual work carried out for the same
- 15. Observation, Results Analysis and validation
- 16. Conclusion
- 17. References
- 18. List of papers published
- 19. Plagiarism check report

Assessment:

ISE II- Continuous Assessment of individual student Maximum Marks-150 ESE – Viva Voce based on presentation and report Maximum Marks-150

Course	Program Outcomes						
outcome	PO1	PO2	PO3	PO4	PO5		
CO1	3	1	3				
CO2	3	1	3	3	3		
CO3	2	1	2	3	3		
CO4	2	3	2	1			
3 - High 2 – Medium 1 –Low							